
A

Embedded Wireless Solutions Support Center:

http://ews-support.lairdtech.com

www.lairdtech.com/wireless
1

© Copyright 2015 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BLE Mesh Introduction
Application Note v1.0

INTRODUCTION
In July of 2017, the Bluetooth SIG released Mesh Profile Specification v1.0 which describes a mesh profile
running on top of any device version 4.0 or newer.

This application note provides an introductory overview of BLE mesh by introducing you to some basic concepts
regarding how a BLE mesh works.

OVERVIEW
A BLE mesh is a collection of up to 32,767 physical BLE devices which send and receive messages to trigger
predefined behaviors in the participating nodes.

BLE mesh is a managed flood network which broadcasts (BLE advertisement) a message to other nodes that are
in range. The receiving nodes re-broadcast (or relay) the message to other nodes that are also in range. This
continues until the message time to live (TTL) expires; once expired, nodes that receive the message no longer
re-broadcast it. If a node receives a message that it previously received, it can immediately discard it by
matching it against entries in the message cache.

BLE mesh networks use relay nodes rather than nodes that function as routers. Routers can be a single point of
failure that can then result in a full network failure. By not relying on routers, these mesh networks that use
flooding are far more reliable. BLE mesh messages can be received from any node within range, even if an
intermediary node fails or is removed from the network.

Heartbeat messages are sent periodically to indicate a node is still alive and how many hops it may be from
another node. This information can be used to optimise the TTL value.

BLE mesh does not make use of connections but rather uses the BLE broadcasts (advertisements) introduced
with BT4.0. This does not mean that all BT4.0 devices automatically support mesh (the OS likely needs to expose
a new API) but devices that are BT4.0 devices and newer have the potential to support BLE mesh.

TOPOLOGY
All nodes in a BLE mesh can transmit and receive messages but some nodes may have one or more specific
features (see Figure 1).

▪ Relay node – Can receive and rebroadcast a message
▪ Low power node – Spends most of its time in a low power state with its radio turned off
▪ Friend node – Works alongside a low power node by storing and forwarding messages intended for a low

power node when polled by the low power node
▪ Proxy node – Devices without a mesh stack can interact with devices in a BLE mesh using a GATT bearer to

a proxy node.

http://ews-support.lairdtech.com/

BLE Mesh Introduction
Application Note

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

2

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

Figure 1: Specific node features

PUBLISH/SUBSCRIBE
Messages are sent and received using a publish/subscribe paradigm. An outgoing message is published. The only
exception is when an acknowledgment message is sent to a specific node that received the behavior-invoking
message. Given the advert-based, managed-flood nature of message transmission, the following is a valid
question: How long does it take for the message to arrive at the destination? Anecdotally, the best answer is:
messages travel at the speed of sound.

Each message consists of an opcode and context data. The opcode dictates the behavior at the receive end; the
data can be up to 380 octets. By the time the application receives a mesh message, it is completely decrypted
and given to the app as a plaintext message.

PROVISIONING
When a mesh device is initially powered up, it is not provisioned. This means that it does not have a node
address nor any other configuration information. In that state, when powered, it sends out ‘un-provisioned’
beacons upon which a provisioner acts.

To become part of a mesh network, the device must first be provisioned. To do this, a mesh provisioner sends
configuration information to the un-provisioned device.

A provisioner is the only entity in a mesh that 1) is aware of all the members of the network and 2) knows how
to program the publication address and the subscription lists of all the nodes (which enables the nodes to
operate as a well-choreographed collective). Individual nodes are never aware of the full picture of the mesh
network.

For example, in an office commissioned with 50 lights and 20 switches, only the provisioner is aware of the node
addresses of all 70 devices. The individual lights and switches have no need for this information. The provisioner
creates group addresses for each office region then sets the publication addresses in the switches and the
subscription addresses in the lights according to the applicable group address. When a light switch’s state
changes, it publishes a group address and the applicable subscribed lights behave accordingly.

http://ews-support.lairdtech.com/

BLE Mesh Introduction
Application Note

Embedded Wireless Solutions Support Center:
http://ews-support.lairdtech.com
www.lairdtech.com/bluetooth

3

© Copyright 2017 Laird. All Rights Reserved

Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0600

A provisioner is not required for the network to function. It is only required when nodes must be added or
removed (blacklisted) from the network. Because of this, there is no central point of failure that could bring
down the entire network.

ADDRESSING
The term group address is simply an address value in the range 0xC000 to 0xFEFF. Consider it the topic field that
is often mentioned in publish/subscribe communications schemes. For example, the provisioner arbitrarily
decides that 0xC100 means meeting room, 0xC101 means storeroom, 0xC102 means the lobby, and so on. It
configures the subscription addresses for the lights appropriately as one of those. There is no rulebook regarding
how to assign those group addresses (in the range 0xC000 to 0xFEFF). The Bluetooth SIG does reserve some
address values to allow messages to be sent to All-nodes (0xFFFF), All-relays (0xFFFE), All-friends (0xFFFD), and
All-proxies (0xFFFC).

ENCRYPTION
By the time the messages are on the air, they have been encrypted twice. Once with an application key and the
second time with a network key. Each key is 128-bit long and the encryption algorithm uses AES in CCM mode.

Because it does not have any knowledge of the keys, an outgoing message at the application layer is not
encrypted. In addition, an application does not know or care about its own node address. When an application
sends the message, the destination address is added and the encryption is performed by the underlying mesh
stack.

Critical information such as node address, app keys, net keys, publication address, subscription list, key bindings,
and other configuration information is wholly managed by the smartBASIC firmware. This information is only
available after a provisioner provisions the device into a network.

REFERENCES
Bluetooth Mesh – www.bluetooth.com/mesh

Bluetooth Mesh Specification v1.0 – https://www.bluetooth.com/specifications/mesh-specifications

About Bluetooth Mesh – https://blog.bluetooth.com/answers-to-your-questions-about-bluetooth-mesh

Laird Bluetooth Modules – https://www.lairdtech.com/product-categories/connectivity-solutions/bluetooth-
modules

REVISION HISTORY
Version Date Notes Contributor(s) Approver

1.0 09 Jan 2018 Initial Release Mark Duncombe Jonathan Kaye

http://ews-support.lairdtech.com/
http://www.bluetooth.com/mesh
https://www.bluetooth.com/specifications/mesh-specifications
https://blog.bluetooth.com/answers-to-your-questions-about-bluetooth-mesh
https://www.lairdtech.com/product-categories/connectivity-solutions/bluetooth-modules
https://www.lairdtech.com/product-categories/connectivity-solutions/bluetooth-modules

	Introduction
	Overview
	Topology
	Publish/Subscribe
	Provisioning
	Addressing
	Encryption
	References
	Revision History

