

smart BASIC
BL600 Extensions
User Manual
Release 1.5.70.0-r5

Embedded Wireless Solutions Support Center: http://ews -support.lairdtech.com
Americas: +1-800-492-2320 Option 2

Europe: +44-1628-858-940

Asia: +852-2923-0610
www.lairdtech.com/bluetooth

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

2 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

© 2014 Laird Technologies

All Rights Reserved. No part of this document may be photocopied, reproduced, stored in a retrieval system,

or transmitted, in any form or by any means whether, electronic, mechanical, or otherwise without the prior

written permission of Laird Technologies.

No warranty of accuracy is given concerning the contents of the information contained in this publication. To

the extent permitted by law no liability (including liability to any person by reason of negligence) will be

accepted by Laird Technologies, its subsidiaries or employees for any direct or indirect loss or damage caused

by omissions from or inaccuracies in this document.

Laird Technologies reserves the right to change details in this publication without notice.

Windows is a trademark and Microsoft, MS-DOS, and Windows NT are registered trademarks of Microsoft

Corporation. BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and licensed to Laird

Technologies and its subsidiaries.

Other product and company names herein may be the trademarks of their respective owners.

Laird Technologies

Saturn House,

Mercury Park,

Wooburn Green,

Bucks HP10 0HH,

UK.

Tel: +44 (0) 1628 858 940

Fax: +44 (0) 1628 528 382

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

3 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

REVISION HISTORY

Version Revisions Date Change History Approved By

1.0 1 Feb 2013 Initial Release Jonathan Kaye

1.1.50.0r3 3 Apr 2013 Production Release Jonathan Kaye

1.1.51.0 15 Apr 2013 Incorporate review comments for JG Jonathan Kaye

1.1.51.5 24 Apr 2013 Engineering release Jonathan Kaye

1.1.53.10 8 May 2013 Engineering release with custom service capability Jonathan Kaye

1.1.53.20 12 Jun 2013
Engineering release with Virtual Serial Service
capability

Jonathan Kaye

1.2.54.0 29 Jun 2013 Production Release Jonathan Kaye

1.2.55.3 26 Jul 2013
Engineering release with PWM & FREQUENCY
output

Jonathan Kaye

1.2.55.5 8 Aug 2013 Engineering release with VSP/Uart Bridging Jonathan Kaye

1.2.55.8 12 Aug 2013 Engineering release with AT+CFG command Jonathan Kaye

1.2.55.12 29 Aug 2013 Engineering release with sysinfo$() Jonathan Kaye

1.3.57.0 12 Sep 2013 Engineering release with UartCloseEx Jonathan Kaye

1.4.59.0 19 Dec 2013 Engineering release v1.4.59.0 Jonathan Kaye

1.5.62.0 4 Jan 2014 Production release v1.5.62.0 (Softdevice 6.0.0) Jonathan Kaye

1.5.65.0 24 Feb 2014 Engineering release v1.5.65.0 (Softdevice 6.0.0) Jonathan Kaye

1.5.66.0 28 Mar 2014 Production release v1.5.66.0 (Softdevice 6.0.0) Jonathan Kaye

1.5.70.0 27 Apr 2014 Production releae v1.5.70.0 (Softdevice 6.0.0) Jonathan Kaye

1.5.70.0-r1 28 Apr 2014 Added the VSP flowchart Jonathan Kaye

1.5.70.0-r2 1 May 2014 Split manuals into Core and BL600 Extension Jonathan Kaye

1.5.70.0-r4 27 Aug 2014 Sync information with Core Manual Jonathan Kaye

1.5.70.0-r5 2 Dec 2014 Added UartOpen specifics for this module Jonathan Kaye

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

4 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

CONTENTS

Revision History .. 3
Contents ... 4
1. Introduction .. 5

Documentation Overview ... 5
What Does a BLE Module Contain? .. 5

2. Interactive Mode Commands ... 6
3. Core Language Built -in Routines ... 12

Information Routines .. 12
UART (Universal Asynchronous Receive Transmit) ... 15
I2C ς Two Wire Interface (TWI)... 16
SPI Interface .. 17

4. Core Extensions Built -in Routines .. 18
Miscellaneous Routines .. 18
Input/Output Interface Routines .. 19

5. BLE Extensions Built-in Routine s .. 29
MAC Address ... 29
Events and Messages .. 30
Miscellaneous Functions ... 45
Advertising Functions ... 48
Connection Functions ... 60
Security Manager Functions ... 65
GATT Server Functions .. 69
GATT Client Functions ... 105
Attribute Encoding Functions ... 147
Attribute Decoding Functions ... 158
Pairing/Bonding Functions .. 172
Virtual Serial Port Service ς Managed Test When Dongle and Application are Available 174

6. Other Extension Built -in Routines .. 189
System Configuration Routines .. 189
Miscellaneous Routines .. 190

7. Events & Messages ... 192
8. Module Configuration .. 193
9. Miscellaneous ... 193
10. Acknowledgements ... 195
Index ... 196

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

5 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

1. INTRODUCTION

Documentation Overview

This BL600 Extension Functionality user guide provides detailed information on BL600-specific smart BASIC

extensions which provide a high level managed interface to the underlying Bluetooth stack in order to

manage the following:

Á GATT table « Services, characteristics, descriptors, advert reports

Á Gatt server/client operation

Á Advertisments and connections

Á BLE security and bonding

Á Attribute encoding and decoding

Á Laird custom VSP service

Á Power management

Á Wireless status

Á Events related to the above

What Does a BLE Module Contain?

Our smart BASIC-based BLE modules are designed to provide a complete wireless processing solution. Each

module contains:

Á A highly integrated radio with an integrated antenna (external antenna options are also available)

Á BLE Physical and Link layer

Á Higher level stack

Á Multiple GPIO and ADC

Á Wired communication interfaces like UART, I2C, and SPI

Á A smart BASIC run-time engine

Á Program accessible flash memory which contains a robust flash file system exposing a conventional file

system and a database for storing user configuration data

Á Voltage regulators and brown-out detectors

For simple end devices, these modules can completely replace an embedded processing system.

The following block diagram (Figure 1) illustrates the structure of the BLE smart BASIC module from a

hardware perspective on the left and a firmware/software perspective on the right.

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

6 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

smartBASIC

run-time engine
(provides safe access to
BLE stack, drivers and

non-vol stores)

Non-Vol

File

System

for

smartBASIC

Apps

Non-Vol

Data

Store

I/
O

,
U

A
R

T
,I
2
C

,S
P

I
D

ri
v
e
rs

Bluetooth Low Energy Stack

User smartBASIC Application

Example App

 PRINT "Laird BL600 Module"

 WaitEvent

44 connection pads

UART GPIO ADC I2C SPI

16K RAM

256K Flash

BLE Radio

OR UFL
Internal

Antenna

ARM Cortex M0

(smartBASIC)

Figure 1: BLE smart BASIC module block diagram

2. INTERACTIVE MODE COMMANDS

Interactive mode commands allow a host processor or terminal emulator to interrogate and control the

operation of a smartBASIC-based module. Many of these emulate the functionality of AT commands. Others

add extra functionality for controlling the filing system and compilation process.

Syntax Unlike commands for AT modems, a space character must be inserted between AT, the command,

and subsequent parameters. This allows the smart BASIC tokeniser to efficiently distinguish

between AT commands and other tokens or variables starting with the letters at.

óExample:

AT I 3

The response to every Interactive mode command has the following form:

<linefeed character> response text <carriage return>

This format simplifies the parsing within the host processor. The response may be one or multiple lines.

Where more than one line is returned, the last line has one of the following formats:

<lf>00<cr> for a successful outcome, or

<lf>01<tab> hex number <tab> optional verbose explanation <cr> for failure.

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

7 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Note: In the case of the 01 response, the <tab>optional_verbose_explanation will be missing in

resource constrained platforms like the BL600 modules. The verbose explanation is a constant

string and since there are over 1000 error codes, these verbose strings can occupy more than ten

kilobytes of flash memory.

The hex number in the response is the error result code consisting of two digits which can be used to help

investigate the problem causing the failure. Rather than provide a list of all the error codes in this manual,

you can use UWTerminal to obtain a verbose description of an error when it is not provided on a platform.

To get the verbose description, click on the BASIC tab (in UWTerminal) and, if the error value is hhhh, enter

the command ER 0xhhhh and note the 0x prefix to hhhh. This is illustrated in Figure 2.

Figure 2: Optional verbose explanation

You can also obtain a verbose description of an error by highlighting the error value, right-clicking, and

selecting Lookup Selected ErrorCode in the Terminal window.
If you get the text UNKNOWN RESULT CODE 0xHHHH, please contact Laird for the latest version of

UWterminal.

The following are BL600-specific AT commands.

AT+CFG

COMMAND

AT+CFG is used to set a non-volatile configuration key. Configuration keys are are comparable to S registers in

modems. Their values are kept over a power cycle but are deleted if the AT&F* command is used to clear the

file system.

If a required _kjbecqn]pekjĂgauĂeoj§pĂheopa`Ă^ahks(ĂqoaĂpdaĂbqj_pekjoĂNvRecordSet() and NvRecordGet() to set

and get these keys respectively.

The num value syntax is used to set a new value and the num ? syntax is used to query the current value.

When the value is read, the syntax of the response is:

27 0xhhhhhhhh (dddd)

~sdanaĂ,tddddddddĂeoĂ]jĂaecdpĂdat`ecepĂjqi^anĂsdech is 0 padded at the left and dddd is the decimal

signed value.

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

8 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

AT+CFG num value or AT+CFG num ?

Returns If the config key is successfully updated or read, the response is \n00\r.

Arguments

num Integer Constant
The ID of the required configuration key. All of the configuration keys are stored as
an array of 16 bit words.

value Integer_constant

This is the new value for the configuration key and the syntax allows decimal, octal,
hexadecimal, or binary values.

This is an Interactive mode command and MUST be terminated by a carriage return for it to be processed.

The following Configuration Key IDs are defined:

ID Definition

40 Maximum size of locals simple variables

41 Maximum size of locals complex variables

42 Maximum depth of nested user defined functions and subroutines

43 The size of stack for storing user functions simple variables

44 The size of stack for storing user functions complex variables

45 The size of the message argument queue length

100 Enable/Disable Virtual Serial Port Service when in interactive mode. Valid values are:

0x0000 Disable

0x0001 Enable

0x80nn Enable ONLY if signal pin nn on module is HIGH

0xC0nn Enable ONLY if signal pin nn on module is LOW

0x81nn Enable ONLY if signal pin nn on module is HIGH and auto-bridged to UART when

connected

0xC1nn Enable ONLY if signal pin nn on module is LOW and auto-bridged to UART when

connected

ELSE Disable

101 Virtual Serial Port Service to use INDICATE or NOTIFY to send data to client.

0 Prefer Notify

Else Prefer Indicate

This is a preference and the actual value is forced by the property of the TX characteristic of the
service.

102 This is the advert interval in milliseconds when advertising for connections in interactive mode and

AT parse mode.

Valid values: 20 to 10240 milliseconds

103 This is the advert timeout in milliseconds when advertising for connections in interactive mode and
AT parse mode.

Valid values: 1 to 16383 seconds

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

9 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

ID Definition

104 In the virtual serial port service manager, data transfer is managed. When sending data using

NOTIFIES, the underlying stack uses transmission buffers of which there are a finite number. This

specifies the number of transmissons to leave unused when sending a lot of data. This also allows

other services to send notifies without having to wait for them.

The total number of transmission buffers can be determined by calling SYSINFO(2014) or in
interactive mode submitting the command ATi 2014

105 When in interactive mode and connected for virtual serial port services, this is the minimum
connection interval in milliseconds to be negotiated with the master.

Valid values: 0 to 4000 ms

Note: If a value of less than 8 is specified, then the minimum value of 7.5 is selected.

106 When in interactive mode and connected for virtual serial port services, this is the maximum

connection interval in milliseconds to be negotiated with the master.

Valid values: 0 to 4000 ms

Note: If a value of less than the minimum specified in 105, then it is forced to the value in 105
plus 2 ms.

107 When in interactive mode and connected for virtual serial port services, this is the connection

supervision timeout in milliseconds to be negotiated with the master.

Valid range: 0 to 32000

Note: If the value is less than the value in 106, then a value double the one specified in 106 is
used.

108 When in interactive mode and connected for virtual serial port services, this is the slave latency to
be negotiated with the master.

Note: An adjusted value is used if this value times the value in 106 is greater than the supervision
timeout in 107.

109 When in interactive mode and connected for virtual serial port services, this is the Tx power used

for adverts and connections.

Note: A low value is set to ensure that in production, if smart BASIC applications are downloaded
over the air, the limited range allows many stations to be used to program devices.

110 If Virtual Serial Port Service is enabled in interactive mode (see 100), then this specifies the size of
the transmit ring buffer in the managed layer sitting above the service characteristic fifo register.

Value range: 32 to 256

111 If Virtual Serial Port Service is enabled in interactive mode (see 100), then this specifies the size of
the receive ring buffer in the managed layer sitting above the service characteristic fifo register.

Value range: 32 to 256

112 If set to 1, then the oanre_aĂQQE@ĂbknĂpdaĂrenpq]hĂoane]hĂlknpĂeoĂ]oĂlanĂJkn`e_§oĂeilhaiajp]pekjĂ]j`Ă]juĂ

other value is per H]en`§oĂmodified service.
See more details of the service definition here.

113 This is the advert interval in milliseconds when advertising for connections in interactive mode and

UART bridge mode.

Valid values: 20 to 10240 milliseconds

114 This is the advert timeout in milliseconds when advertising for connections in interactive mode and

UART bridge mode.

Valid values: 0 to 16383 seconds. 0 disables the timer (makes it continuous)

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

10 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

ID Definition

115 This is used to specify the UART baudrate when Virtual Serial Mode Service is active and UART

bridge mode is enabled.

Valid values: 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 76800, 115200,
230400, 250000, 460800, 921600, 1000000.

Note: If an invalid value is entered, then the default value of 9600 is used.

116 In VSP/UART bridge mode, this value specifies the latency in milliseconds for data arriving via the

UART and transfering to VSP and then onward on-air. This mechanism ensures that the underlying

bridging algorithm waits for up to this amount of time before deciding that no more data is going
to arrive to fill a BLE packet and so flushes the data onwards.

Note: Given that the largest packet size takes 20 bytes, if more than 20 bytes arrive then the
latency timer is overridden and the data is immediately sent.

Interactive Command: YES

AT+CFG is a core command.

Note: These values revert to factory default values if the flash file system is deleted using the

AT & F * interactive command.

AT + BTD *

COMMAND

Deletes the bonded device database from the flash.

AT + BTD*

Returns \n00\r

Arguments None

Interactive
Command

YES

This is an interactive mode command and MUST be terminated by a carriage return for it to be processed.

Note: The module self-reboots so that the bonding manager context is also reset.

óExamples:

AT+BTD*

AT+BTD* is an extension command.

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

11 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

=PĎ'ĎI=?ĎĎ¨-.ĎdatĎ`ecepĎi]_Ď]``naoo©

COMMAND

This is a command that is successful one time as it writes an IEEE MAC address to non-volatile memory. This

address is then used instead of the random static MAC address that comes preprogrammed in the module.

Notes: If the module has an invalid licence, then this address is not visible.

If the address 000000000000 is written then it is treated as invalid and prevents a new

address from being entered.

AT 'ĎI=?Ď¨-.ĎdatĎ`ecepo©

Returns \n00\r

or

\n01 192A\r

Where the error code 192A is NVO_NVWORM_EXISTS. This means that an IEEE MAC
address already exists; this can be read using the command AT I 24

Arguments
=ĂopnejcĂ`aheiepa`Ă^uĂ¨©Ăsde_dĂod]hhĂ^aĂ]Ăr]he`Ă-.ĂdatĂ`ecepĂMAC address that is written to
non-volatile memory.

Interactive
Command

YES

This is an interactive mode command and MUST be terminated by a carriage return for it to be processed.

Note: The module self-reboots if the write is successful. Subsequent invocations of this command

generate an error.

óExamples:

AT+MAC ñ008098010203ò

AT+MAC is an extension command

AT + BLX

COMMAND

This command is used to stop all radio activity (adverts or connections) when in interactive mode. It is

particularly useful when the virtual serial port is enabled while in interactive mode.

AT + BLX

Command

Returns \n00\r

Arguments None

Interactive
Command

YES

This is an Interactive Mode command and MUST be terminated by a carriage return for it to be processed.

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

12 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Note: The module self-reboots so that the bonding manager context is also reset.

óExamples:

AT+BLX

AT+BLX is an extension command.

3. CORE LANGUAGE BUILT-IN ROUTINES

Core language built-in routines are present in every implementation of smartBASIC. These routines provide

the basic programming functionality. They are augmented with target-specific routines for different platforms

which are described in the extention manual for each target platform.

All the core functionality is described in the document smartBASIC Core Functionality.

However some functions have small behaviour differences and they are listed below.

Information Routines

SYSINFO

FUNCTION

Returns an informational integer value depending on the value of varId argument.

SYSINFO(varId)

Returns INTEGER. Value of information corresponding to integer ID requested.

Exceptions Á Local Stack Frame Underflow

Á Local Stack Frame Overflow

Arguments:

varId byVal varId AS INTEGER

An integer ID which is used to determine which information is to be returned as described

below.

0
ID of device. Each platform type has a unique identifier.

BL600 module value « 0x42460600

3

Version number of module Firmware. For example W.X.Y.Z is returned as a 32 bit

value made up as follows:

 (W<<26) + (X<<20) + (Y<<6) + (Z)
 sdanaĂUĂeoĂpdaĂ^qeh`Ăjqi^anĂ]j`ĂVĂeoĂpdaĂ¦oq^-^qeh`§Ăjqi^an

33 BASIC core version number.

601 Flash File System: Data Segment: Total Space

602 Flash File System: Data Segment: Free Space

603 Flash File System: Data Segment: Deleted Space

611 Flash File System: FAT Segment: Total Space

612 Flash File System: FAT Segment: Free Space

http://ews-support.lairdtech.com/
http://b7c114b8ac32968eb0a5-0034a95ea8a03cf459b9e4f7b28746f2.r86.cf3.rackcdn.com/home/brandworld/files/User%20Guide%20-%20smartBASIC%20Core%20Functionality.pdf

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

13 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

613 Flash File System: FAT Segment: Deleted Space

631 NvRecord Memory Store Segment: Total Space

632 NvRecord Memory Store Segment: Free Space

633 NvRecord Memory Store Segment: Deleted Space

1000 BASIC compiler HASH value as a 32 bit decimal value

1001 How RAND() generates values: 0 for PRNG and 1 for hardware assist

1002 Minimum baudrate

1003 Maximum baudrate

1004 Maximum STRING size

1005
1 for run-time only implementation

3 for compiler included

2000

Reason for reset:

 8 « Self-Reset due to Flash Erase

 9 « ATZ
 10 « Self-Reset due to smart BASIC app invoking function RESET()

2002 Timer resolution in microseconds

2003 Number of timers available in a smart BASIC Application

2004 Tick timer resolution in microseconds

Interactive
Command

NO

 //Example :: SysInfo.sb (See in Firmware Zip file)

 PRINT " \ nSysInfo 1000 = " ;SYSINFO(1000) // BASIC compiler HASH value

 PRINT " \ nSysInfo 2003 = " ;SYSINFO(2003) // Number of timers

 PRINT " \ nSysInfo 0x8010 = " ;SYSINFO(0x8010) // Code memory page size from FICR

Expected Output (For BL600):

SYSINFO is a core language function.

SysInfo 1000 = 1315489536

SysInfo 2003 = 8

SysInfo 0x8010 = 1024

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

14 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

SYSINFO$

FUNCTION

Returns an informational string value depending on the value of varId argument.

SYSINFO$(varId)

Returns STRING. Value of information corresponding to integer ID requested.

Exceptions Á Local Stack Frame Underflow

Á Local Stack Frame Overflow

Arguments:

varId byVal varId AS INTEGER

An integer ID which is used to determine which information is to be returned as described

below.

4
The Bluetooth address of the module. It is seven bytes long. First byte is 00 for IEEE

public address and 01 for random public address. Next six bytes are the address.

14

A random public address unique to this module. May be the same value as in 4

above unless AT+MAC was used to set an IEEE mac address.

It is seven bytes long. First byte is 00 for IEEE public address and 01 for random
public address. Next six bytes are the address.

Interactive
Command

NO

 //Example :: SysInfo$.sb (See in Firmware Zip file)

 PRINT " \ nSysInfo$(4) = " ;SYSINFO$ (4) // address of module

 PRINT " \ nSysInfo$(14) = " ;SYSINFO$ (14) // public random address

 PRINT " \ nSysInfo$(0) = " ;SYSINFO$ (0)

Expected Output:

SYSINFO$ is a core language function.

SysInfo$(4) = \ 01\ FA\ 84\ D7H\ D9\ 03

SysInfo$(14) = \ 01\ FA\ 84\ D7H\ D9\ 03

SysInfo$(0) =

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

15 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

UART (Universal Asynchronous Receive Transmit)

UartOpen

FUNCTION

This function is used to open the main default uart peripheral using the parameters specified.

See core manual for further details.

UARTOPEN (baudrate,txbuflen,rxbuflen,stOptions)

stOptions

byVal stOptions AS STRING
This string (can be a constant) MUST be exactly 5 characters long where each character

is used to specify further comms parameters as follows.

Character Offset:

0

DTE/DCE role request:

Á T « DTE

Á C « DCE

1

Parity:

Á N « None

Á O « Odd (Not Available)

Á E « Even (Not Available)

2 Databits: 8

3 Stopbits: 1

4

Flow Control:

Á N « None

Á H « CTS/RTS hardware

Á X « Xon/Xof (Not Available)

UartCloseEx

Note: On the BL600 (firmware versions older than 1.3.57.3), the following bug exists:

If the RX and TX buffers are not empty, an internal pointer is still set to NULL. This results in

unpredictable behavior.

Workaround: Use UartInfo(6) to check if the buffers are empty and then call UartCloseRx(1) as

per the example below.

Workaround for FW 1.3.57.0 and earlier (BL600):

 //Example :: UartCloseExWA.sb (

See in Firmware Zip file)

 DIM rc1

 DIM rc2

 UartClose ()

 rc1 = UartOpen (9600,0,0, "CN81H") //open as DTE at 300 baudrate, odd parity

 //8 databits, 1 stopbits, cts/rts flow control

 PRINT "Laird"

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

16 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 // --- Workaround for bug for firmware versions older than 1.3.57.3

 IF UartInfo (6) !=0 THEN

 PRINT " \ nData in at least one buffer. Uart Port not closed"

 ELSE

 rc2= UartCloseEx (1)

 rc1 = UartOpen (9600,0,0, "CN81H") //open as DTE at 300 baudrate, odd parity

 PRINT " \ nThe Uart Port was closed"

 ENDIF

For FW 1.3.57.3 and newer (BL600):

 //Example :: UartCloseEx.sb (See in Firmware Zip file)

 DIM rc1

 DIM rc2

 UartClose ()

 rc1 = UartOpen (9600,0,0, "CN81H") //open as DTE at 300 baudrate, odd parity

 //8 databits, 1 stopbits, cts/rts flow

control

 PRINT "Laird"

 IF UartCloseEx (1) !=0 THEN

 PRINT " \ nData in at least one buffer. Uart Port not closed"

 ELSE

 rc1 = UartOpen (9600,0,0, "CN81H") //open as DTE at 300 baudrate, odd parity

 PRINT " \ nUart Port was closed"

 ENDIF

Expected Output:

UARTCLOSEEX is a core function.

UartSetRTS

The BL600 module does not offer the capability to control the RTS pin because the underlying hardware does

not allow it.

UartBREAK

The BL600 module does not offer the capability to send a BREAK signal.

If this feature is required, then the best way to expedite it is to put UART_TX and an I/O pin configured as an

output through an AND gate.

For normal operation, the general purpose output pin is set to logic high which means the output of the AND

gate follows the state of the UART_TX pin.

When a BREAK is to be sent, the general purpose pin is set to logic high which means the output of the AND

gate are low and remain low regardless of the state of the UART_TX pin

I2C « Two Wire Interface (TWI)

Laird

Data in at least one buffer. Uart Port not closed

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

17 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

The BL600 can only be configured as an I2C master with the additional constraint that it be the only master

on the bus and only 7 bit slave addressing is supported.

Note: On the BL600 (firmware releases older than 1.2.54.4), there is an issue where some I2C slaves

are not able to drive the ACK down to a low enough voltage level for the module to recognise it

]oĂ]jĂ=?G*ĂPdeoĂeoĂ]ĂnaoqhpĂkbĂ]Ă^qcĂejĂpdaĂ>H2,,§oĂE.?Ă`neranĂsde_dĂnaoqhpoĂejĂpdaĂO@=ĂhejaĂjkpĂ

being released by the module. This has been corrected in release 1.2.54.4 and the firmware is

available as a UART download on request. You should upgrade the firmware if you have an I2C

slave not responding to the correct slave address.

SPI Interface

Note: The BL600 module can only be configured as a SPI master.

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

18 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

4. CORE EXTENSIONS BUILT-IN ROUTINES

Miscellaneous Routines

This section describes all miscellaneous functions and subroutines.

RESET

SUBROUTINE

This routine is used to force a reset of the module.

RESET (nType)

Exceptions Á Local Stack Frame Underflow

Á Local Stack Frame Overflow

Arguments:

nType byVal nType AS INTEGER.
This is for future use. Set to 0.

Interactive
Command

NO

 //Example :: RESET.sb (See in BL600CodeSnippets.zip)

 RESET(0) //force a reset of the module

Expected Output:

Like when you reset the module using the interactive command

¦=PV§(ĂpdaĂ?POĂej`e_]pknĂsehhĂikiajpan]hhuĂ_d]jcaĂbnkiĂcnaajĂpkĂ

red, then back to green.

RESET is a core subroutine.

ERASEFILESYSTEM

FUNCTION

This function is used to erase the flash file system which contains the application that invoked this function, if
and only if, the SIO7 input pin is held high.

Given that SIO7 is high, after erasing the file system, the module resets and reboots into command mode

with the virtual serial port service enabled; the module advertises for a few seconds. See the virtual serial port

service section for more details.

This facility allows the current $autorun$ application to be replaced with a new one.

WARNING

If this function is called from within $autorun$, and the SIO7 input is high, then it will get erased and a fresh

download of the application is required which can be facilitated over the air.

ERASEFILESYSTEM (nArg)

Returns INTEGER Indicates success of command:

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

19 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

0 Successful erasure. The module reboots.

<>0 Failure.

Exceptions Á Local Stack Frame Underflow

Á Local Stack Frame Overflow

Arguments:

nArg byVal nArg AS INTEGER

This is for future use and MUST always be set to 1. Any other value will

result in a failure.

 //Example :: EraseFileSystem.sb (See in BL600CodeSnippets.zip)

 DIM rc

 rc = EraseFileSystem (1234)

 IF rc!=0 THEN

 PRINT " \ nFailed to erase file system because incorrect parameter"

 ENDIF

 //Input SIO7 is low

 rc = EraseFileSystem (1)

 IF rc!=0 THEN

 PRINT " \ nFailed to erase file system because SIO7 is low"

 ENDIF

Expected Output:

ERASEFILESYSTEM is an extension function.

Input/Output Interface Routines

I/O and interface commands allow access to the physical interface pins and ports of the smart BASIC modules.

Most of these commands are applicable to the range of modules. However, some are dependent on the

actual I/O availability of each module.

GPIO Events

EVGPIOCHANn

Here, n is from 0 to N where N is platform dependent and an event is generated when

a preconfigured digital input transition occurs. The number of digital inputs that can

auto-generate is hardware dependent. For the BL600 module, N can be 0,1,2 or 3.

Use GpioBindEvent() to generate these events.

See example for GpioBindEvent()

EVDETECTCHANn

Here, n is from 0 to N where N is platform dependent and an event is generated when
a preconfigured digital input transition occurs. The number of digital inputs that can
auto-generate is hardware dependent. For the BL600 module, N can only be 0.

Use GpioAssignEvent() to generate these events.

See example for GpioAssignEvent()

Failed to erase file system because incorrect parameter

Failed to erase file system because SIO7 is low

00

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

20 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

GpioSetFunc

FUNCTION

This routine sets the function of the GPIO pin identified by the nSigNum argument.

The module datasheet contains a pinout table which denotes SIO (Special I/O) pins. The number designated

for that special I/O pin corresponds to the nSigNum argument.

GPIOSETFUNC (nSigNum, nFunction, nSubFunc)

Returns
INTEGER, a result code. The most typical value is 0x0000, indicating a successful

operation.

Arguments

nSigNum
byVal nSigNum AS INTEGER

The signal number as stated in the pinout table of the module.

nFunction

byVal nFunction AS INTEGER

Specifies the configuration of the GPIO pin as follows:

1 DIGITAL_IN

2 DIGITAL_OUT

3 ANALOG_IN

4 ANALOG_REF (not currently available on the BL600 module)

5 ANALOG_OUT (not currently available on the BL600 module)

nSubFunc

byVal nSubFunc INTEGER

Configures the pin as follows:

If nFunction == DIGITAL_IN

Bits 0..3

0x01 Pull down resistor (weak)

0x02 Pull up resistor (weak)

0x03 Pull down resistor (strong)

0x04 Pull up resistor (strong)

Else No pull resistors

Bits 4, 5

0x10 When in deep sleep mode, awake when this pin is LOW

0x20 When in deep sleep mode, awake when this pin is HIGH

Else No effect in deep sleep mode

Bits 8..31

Must be 0s

If nFuncType == DIGITAL_OUT

Values:

0 Initial output to LOW

1 Initial output to HIGH

2

Output is PWM (Pulse Width Modulated Output). See function

GpioConfigPW() for more configuration. The duty cycle is set using

function GpioWrite().

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

21 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

3

Output is FREQUENCY. The frequency is set using function GpioWrite()

where 0 switches off the output; any value in range 1..4000000

generates an output signal with 50% duty cycle with that frequency.

Bits 4..6 (output drive capacity)

0
0 « Standard

1 « Standard

1
0 « High

1 « Standard

2
0 « Standard

1 « High

3
0 « High

1 « High

4
0 « Disconnect

1 « Standard

5
0 « Disconnect

1 « High

6
0 « Standard

1 « Disconnect

7 0 « High

1 « Disconnect

If nFuncType == ANALOG_IN

0 Use the system default: 10-bit ADC, 2/3 scaling

0x13 10-bit ADC, 1/3 scaling

0x11 10-bit ADC, unity scaling

Interactive
Command

NO

Note: The internal reference voltage is 1.2V with +/- 1.5% accuracy.

WARNING6ĂĂPdeoĂoq^bqj_Ăr]hqaĂeoĂ¦chk^]h§Ă]j`Ăkj_aĂ_d]jca`ĂsehhĂ]llhuĂpkĂ]hhĂ=@?Ăejlqpo.

 //Example :: GpioSetFunc.sb (See in Firmware Zip file)

 PRINT GpioSetFunc (3,1,2) //Digital In Gpio pin 3, weak pull up resistor

 PRINT GpioSetFunc (4,3,0) //Analog In Gpio pin 4, default settings

 PRINT GpioSetFunc (5,1,0x12) //internal pull up on gpio5 and wake from deep sleep

 //when there is transition from high to low

Expected Output:

GPIOSETFUNC is a Module function.

GpioConfigPwm

FUNCTION

000

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

22 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

This routine configures the PWM (Pulse Width Modulation) of all output pins when they are set as a PWM

output using GpioSetFunc() function described above.

Note: This eoĂ]Ă¦ope_gu§Ă_kjbecqn]pekj7Ă_]hhejcĂepĂ]bba_poĂ]hhĂLSIĂkqplqpoĂ]hna]`uĂ_kjbecqna`*ĂEpĂeoĂ]`reoa`Ă

that this is called once at the beginning of your application and not changed again within the

application unless all PWM outputs are deconfigured and then re-enabled after this function is

called.

The PWM output is generated using 32-bit hardware timers. The timers are clocked by a 1 MHz clock source.

A PWM signal has a frequency and a duty cycle property; the frequency is set using this function and is

defined by the nMaxResolution parameter. For a given nMaxResolution value, given that the timer is clocked

using a 1 MHz source, the frequency of the generated signal is 1000000 divided by nMaxResolution. Hence if

nMinFreqHz is more than the 1000000/nMaxResolution, this function will fail with a non-zero value.

The nMaxResolution can also be viewed as defining the resolution of the PWN output in the sense that the

duty cycle can be varied from 0 to nMaxResolution. The duty cycle of the PWM signal is modified using the

GpioWrite() command

For example, a period of 1000 generates an output frequency of 1KHz, a period of 500, and a frequency of

2Khz etc.

On exit, the function returns with the actual frequency in the nMinFreqHz parameter.

GPIOCONFIGPWM (nMinFreqHz, nMaxResolution)

Returns
INTEGER, a result code.

Most typical value: 0x0000 (indicates a successful operation)

Arguments

nMinFreqHz
byRef nMinFreqHz AS INTEGER

On entry this variable contains the minimum frequency desired for the PWM output. On
exit, if successful, it contains the actual frequency of the PWM output.

nMaxResolution
byVal nMaxResolution INTEGER.

This specifies the duty cycle resolution and the value to set to get a 100% duty cycle.

Interactive
Command

No

 // Example :: GpioConfigPWM() (See in Firmware Zip file)

 DIM rc

 DIM nFreqHz, nMaxRes

 // we want a minimum frequency of 500Hz so that we can use a 100Hz low pass filter to

 // create an analogue output which has a 100Hz bandwidth

 nFreqHz = 500

 // we want a resolution of 1:1000 in the generated analogue output

 nMaxValUs = 1000

 PRINT GpioConfigPWM (nFreqHz,nMax Res)

 PRINT " \ nThe actual frequency of the PWM output is " ;nFreqHz; " \ n"

 // now configure SIO2 pin as a PWM output

 PRINT GpioSetFunc (2,2,2) //3rd parameter is subfunc == PWM output

 // Set PWM output to 0%

 GpioWrite (2,0)

 // Set PWM output to 50%

 GpioWrite (2, (nMaxRes/2))

 // Set PWM output to 100%

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

23 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 GpioWrite (2,nMax Res) // any value >= nMax Res will give a 100% duty cycle

 // Set PWM output to 33.333%

GpioWrite (2, (nMaxRes/3))

Expected Output:

GPIOCONFIGPWM is a Module function.

GpioRead

FUNCTION

This routine reads the value from a SIO (special purpose I/O) pin.

The module datasheet will contain a pinout table which will mention SIO (Special I/O) pins and the number

designated for that special I/O pin corresponds to the nSigNum argument.

GPIOREAD (nSigNum)

Returns
INTEGER, the value from the signal. If the signal number is invalid, it returns the value 0.

For digital pins, the value is 0 or 1. For ADC pins it is a value in the range of 0 to M where

M is the maximum based on the bit resolution of the analogue to digital converter.

Arguments

nSigNum
byVal nSigNum INTEGER

The signal number as stated in the pinout table of the module.

Interactive
Command

No

 //Example :: GpioRead.sb (See in Firmware Zip file)

 DIM signal

 signal = GpioRead (3)

 PRINT signal

Expected Output:

GPIOREAD is a Module function.

GpioWrite

SUBROUTINE

This routine writes a new value to the GPIO pin. If the pin number is invalid, nothing happens.

If the GPIO pin has been configured as a PWM output then the nNewValue specifies a value in the range 0 to

N where N is the maximum PWM value that generates a 100% duty cycle output (a constant high signal) and

N is a value that is configured using the function GpioConfigPWM().

0

The actual frequency of the PWM output is 1000

0

1

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

24 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

If the GPIO pin has been configured as a FREQUENCY output then the nNewValue specifies the desired

frequency in Hertz in the range 0 to 4000000. Setting a value of 0 makes the output a constant low value.

Setting a value greater than 4000000 clips the output to a 4 MHz signal.

GPIOWRITE (nSigNum, nNewValue)

Arguments

nSigNum
byVal nSigNum INTEGER.

The signal number as stated in the pinout table of the module.

nNewValue

byVal nNewValue INTEGER.

The value to be written to the port. If the pin is configured as digital then 0 will clear the
pin and a non-zero value will set it.

If the pin is configured as analogue, then the value is written to the pin.

If the pin is configured as a PWM, then this value sets the duty cycle.

If the pin is configured as a FREQUENCY, then this value sets the frequency.

Interactive
Command

No

 //Example :: GpioWrite.sb (See in Firmware Zip file)

 DIM rc,dutycycle,freqHz,minFreq

 //set sio pin 1 to an output and initialise it to high

 PRINT GpioSetFunc (1,2,0) ; " \ n"

 //set sio pin 5 to PWM output

 minFreq = 500

 PRINT GpioConfigPWM (minFreq,1024) ; " \ n" //set max pwm value/resolution to 1:1024

 PRINT GpioSetFunc (5,2,2) ; " \ n"

 PRINT GpioSetFunc (7,2,3) ; " \ n\ n" //set sio pin 7 to Frequency output

 GpioWrite (18,0) //set pin 1 to low

 GpioWrite (18,1) //set pin 1 to high

 //Set the PWM output to 25%

 GpioWrite (5,256) //256 = 1024/4

 //Set the FREQ output to 4.236 Khz

 GpioWrite (7,4236)

 //Note you can generate a chirp output on sio 7 by starting a timer which expires

 //every 100ms and then in the timer handler call GpioWrite(7,xx) and then

 //increment xx by a certain value

Expected Output:

GPIOWRITE is a Module function.

GpioBindEvent

FUNCTION

This routine binds an event to a level transition on a specified special I/O line configured as a digital input so

that changes in the input line can invoke a handler in smart BASIC user code.

0000

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

25 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Note: In the BL600 module, using this function results in over 1 mA of continuous current consumption

from the power supply. If power is important, use GpioAssignEvent() instead which uses other

resources to expedite an event.

GPIOBINDEVENT (nEventNum, nSigNum, nPolarity)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

nEventNum
byVal nEventNum INTEGER

The GPIO event number (in the range of 0 - N) which will result in the event
EVGPIOCHANn being thrown to the smart BASIC runtime engine.

nSigNum
byVal nSigNum INTEGER

The signal number as stated in the pinout table of the module.

nPolarity

byVal nPolarity INTEGER

States the transition as follows:

0 Low to high transition

1 High to low transition

2 Either a low to high or high to low transition

Interactive
Command

No

 //Example :: GpioBindEvent.sb (See in Firmware Zip file)

 FUNCTION Btn0Press ()

 PRINT " \ nHello"

 ENDFUNC 0

 PRINT GpioBindEvent (0,16,1) //Bind event 0 to high low transition on sio16

(button0)

 ONEVENT EVGPIOCHAN0 CALL Btn0Press //When event 0 happens, call Btn0Press

 PRINT " \ nPress button 0"

 WAITEVENT

Expected Output:

GPIOBINDEVENT is a Module function.

GpioUnbindEvent

FUNCTION

This routine unbinds the runtime engine event from a level transition bound using GpioBindEvent().

GPIOUNBINDEVENT (nEventNum)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

0

Press button 0

Hello

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

26 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Arguments

nEventNum
byVal nEventNum INTEGER.

The GPIO event number (in the range of 0 - N) which is disabled so that it no longer
generates run-time events in smart BASIC.

Interactive
Command

No

 //Example :: GpioUnbindEvent.sb (See in Firmware Zip file)

 FUNCTION Btn0Press ()

 PRINT " \ nHello"

 ENDFUNC 1

 FUNCTION Tmr0TimedOut ()

 PRINT " \ nNothing happened"

 ENDFUNC 0

 PRINT GpioBindEvent (0,16,1) ; " \ n"

 ONEVENT EVGPIOCHAN0 CALL Btn0Press

 ONEVENT EVTMR0 CALL Tmr0TimedOut

 PRINT GpioUnbindEvent (0) ; " \ n"

 PRINT " \ nPress button 0 \ n"

 TimerStart (0,8 000,0)

 WAITEVENT

Expected Output:

GPIOUNBINDEVENT is a Module function.

GpioAssignEvent

FUNCTION

This routine assigns an event to a level transition on a specified special I/O line configured as a digital input.

Changes in the input line can invoke a handler in smart BASIC user code

Note: In the BL600, this function results in around 4uA of continuous current consumption from the

power supply. It is impossible to assign a polarity value which detects either level transitions.

GPIOASSIGNEVENT (nEventNum, nSigNum, nPolarity)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

nEventNum
byVal nEventNum INTEGER.

The GPIO event number (in the range of 0 - N) which results in the event EVDETECTCHANn

0

0

Press button 0

Nothing happened

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

27 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

being thrown to the smart BASIC runtime engine.

Note: A value of 0 is only valid for the BL600.

nSigNum
byVal nSigNum INTEGER.

The signal number as stated in the pinout table of the module.

nPolarity

byVal nPolarity INTEGER.

States the transition as follows:

0 Low to high transition

1 High to low transition

2
Either a low to high or high to low transition

Note: This is not available in the BL600 module.

Interactive
Command

No

 //Example :: GpioAssignEvent.sb (See in Firmware Zip file)

 FUNCTION Btn0Press ()

 PRINT " \ nHello"

 ENDFUNC 0

 PRINT GpioAssignEvent (0,16,1) //Assign event 0 to high low transition on

sio16 (button0)

 ONEVENT EVDETECTCHAN0 CALL Btn0Press //When event 0 is detected, call Btn0Press

 PRINT " \ nPress button 0"

 WAITEVENT

Expected Output:

GPIOASSIGNEVENT is a Module function.

GpioUnAssignEvent

FUNCTION

This routine unassigns the runtime engine event from a level transition assigned using GpioAssignEvent().

GPIOUNASSIGNEVENT (nEventNum)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

nEventNum byVal nEventNum INTEGER.

The GPIO event number (in the range of 0 - N) which is disabled so that it no longer
generates run-time events in smart BASIC.

Note: A value of 0 is only valid for the BL600.

Interactive
Command

No

0

Press button 0

Hello

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

28 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 //Example :: GpioUnAssignEvent.sb (See in Firmware Zip file)

 FUNCTION Btn0Press ()

 PRINT " \ nHello"

 ENDFUNC 1

 FUNCTION Tmr0TimedOut ()

 PRINT " \ nNothing happened"

 ENDFUNC 0

 PRINT GpioAssignEvent (0,16,1) ; " \ n"

 ONEVENT EVDETECTCHAN0 CALL Btn0Press

 ONEVENT EVTMR0 CALL Tmr0TimedOut

 PRINT GpioUnAssignEvent (0) ; " \ n"

 PRINT " \ nPress button 0 \ n"

 TimerStart (0,8000,0)

 WAITEVENT

Expected Output:

GPIOUNASSIGNEVENT is a Module function.

0

0

Press button 0

Nothing happened

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

29 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

5. BLE EXTENSIONS BUILT-IN ROUTINES

MAC Address

To address privacy concerns there are four types of MAC addresses in a BLE device which can change as

often as required. For example, an iPhone regularly changes its BLE MAC address and always exposes only its

resolvable random address.

To manage this, the usual six octet MAC address is qualified on-air by a single bit which qualifies the MAC

address as public or random. If public, the format is as defined by the IEEE organization. If random, it can be

up to three types and this qualification is done using the upper two bits of the most significant byte of the

random MAC address. The exact details and format of how the specification requires this to be managed are

not relevant for the purpose of how BLE functionality is exposed in this module and only how various API

functions in smartBASIC expect MAC addresses to be provided is detailed here.

Where a MAC address is expected as a parameter (or provided as a response) it is always a STRING variable.

This variable is seven octets long where the first octet is the address type and the the other six octets

comprises the usual MAC address in big endian format (so that most significant octet of the address is at

offset 1), whether public or random.

The address type is:

0 Public

1 Random Static

2 Random Private Resolvable

3 Randam Private Non-resolvable

All other values are illegal

For example:

To specify a public address which has the MAC potion as 112233445566, the STRING variable will contain

seven octets (00112233445566) and a variable can be initialized using a constant string by escaping as

follows:

@EIĂ]``nĂ6Ă]``n9©\00\11\22\33\44\55\22©*ĂHegaseoaĂ]Ăop]pe_Ăn]j`kiĂ]``naooĂsehhĂ^aĂ,-?-..//001122Ă

(upper 2 bits of MAC portion == 11), a resolvable random address will be 02412233445566 (upper 2

bits of MAC portion ==01) and a non-resolvable address will be 03112233445566 (upper 2 bits of MAC

portion ==00).

Note: The MAC address portion in smartBASIC is always in big endian format. If you sniff on-air

packets, the same six packets appear little endian format, hence reverse order « and you will

NOT see seven bytes, but a bit in the packet somewhere which specifies it to be public or

random.

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

30 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Events and Messages

EVBLE_ADV_TIMEOUT

This event is thrown when adverts that are started using BleAdvertStart() time out. Usage is as per the

example below.

 //Example :: EvBle_Adv_Timeout.sb (See in BL600CodeSnippets.zip)

 DIM peerAddr$

 //handler to service an advert timeout

 FUNCTION HndlrBle AdvTimOut ()

 PRINT " \ nAdvert stopped via timeout"

 //DbgMsg(" \ n - could use SystemStateSet(0) to switch off")

 // --

 // Switch off the system - requires a power cycle to recover

 // --

 // rc = SystemStateSet(0)

 ENDFUNC 0

 //start adverts

 //rc = BleAdvertStart(0,"",100,5000,0)

 IF BleAdvertStart (0,peerAddr$,100,2000,0) ==0 THEN

 PRINT " \ nAdvertisement Successful"

 ELSE

 PRINT " \ n\ nAdvertisement not successful"

 ENDIF

 ONEVENT EVBLE_ADV_TIMEOUT CALL HndlrBle AdvTimOut

 WAITEVENT

Expected Output:

EVBLEMSG

The BLE subsystem is capable of informing a smart BASIC application when a significant BLE-related event has

occurred. It does this by throwing this message (as opposed to an EVENT, which is akin to an interrupt and

has no context or queue associated with it). The message contains two parameters. The first parameter

(subsequently called msgID) identifies what event was triggered; the second parameter (subsequently called

msgCtx) conveys some context data associated with that event. The smart BASIC application must register a

handler function which takes two integer arguments to be able to receive and process this message.

Advert Started

Advert stopped via timeout

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

31 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Note: The messaging subsystem, unlike the event subsystem, has a queue associated with it; unless the

queue is full, all of the messages remain pending until they are handled. Only messages that

have handlers associated with them get inserted into the queue. This is to prevent unhandled

messages from filling that queue. The following table provides a list of triggers and associated

context parameter.

MsgID Description

0 A connection has been established and msgCtx is the connection handle.

1 A disconnection event and msgCtx identifies the handle.

2 Immediate Alert Service Alert. The 2nd parameter contains new alert level.

3 Link Loss Alert. The 2nd parameter contains new alert level.

4 A BLE Service Error. The 2nd parameter contains the error code.

5

Thermometer Client Characteristic Descriptor value has changed.
Indication enable state and msgCtx contains the new value:
0 « Disabled
1 « Enabled

6 Thermometer measurement indication has been acknowledged.

7

Blood Pressure Client Characteristic Descriptor value has changed.
Indication enable state and msgCtx contains the new value:
0 « Disabled
1 « Enabled

8 Blood Pressure measurement indication has been acknowledged.

9 Pairing in progress and display passkey supplied in msgCtx.

10 A new bond has been successfully created.

11 Pairing in progress and authentication key requested. Key type is msgCtx is.

12

Heart Rate Client Characteristic Descriptor value has changed.
Notification enable state and msgCtx contains the new value:
0 « Disabled
1 « Enabled

14 Connection parameters update and msgCtx is the conn handle.

15 Connection parameters update fail and msgCtx is the conn handle.

16 Connected to a bonded master and msgCtx is the conn handle.

17 A new pairing has replaced old key for the connection handle specified.

18 The connection is now encrypted and msgCtx is the conn handle.

19
The supply voltage has dropped below that specified in the most recent call of
SetPwrSupplyThreshMv(i) and msgCtx is the current voltage in milliVolts.

20 The connection is no longer encrypted and msgCtx is the conn handle

21
The device name characteristic in the GAP service of the local gatt table has been written by
the remote gatt client.

Note: Message ID 13 is reserved for future use

An example of how these messages can be used is as follows:

 //Example :: EvBleMsg.sb (See in BL600CodeSnippets.zip)

 DIM addr$: addr$= ""

 DIM rc

 //==

 // This handler is called when there is a BLE message

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

32 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 //==

 FUNCTION HndlrBleMsg (BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER)

 SELECT nMsgId

 CASE 0

 PRINT " \ nBle Connection " ;nCtx

 rc = BleAuthenticate (nCtx)

 CASE 1

 PRINT " \ nDisconnected " ;nCtx; " \ n"

 CASE 18

 PRINT " \ nConnection " ;nCtx; " is now encrypted"

 CASE 16

 PRINT " \ nConnected to a bonded master"

 CASE 17

 PRINT " \ nA new pairing has replaced the old key" ;

 CASE ELSE

 PRINT " \ nUnknown Ble Msg"

 ENDSELECT

 ENDFUNC 1

 FUNCTION HndlrBlrAdvTimOut ()

 PRINT " \ nAdvert stopped via timeout"

 PRINT " \ nExiting..."

 ENDFUNC 0

 FUNCTION Btn0Press ()

 PRINT " \ nExiting..."

 ENDFUNC 0

 PRINT GpioSetFunc (16,1,0x12)

 PRINT GpioBindEvent (0,16,0)

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVBLE_ADV_TIMEOUT CALL HndlrBlrAdvTimOut

 ONEVENT EVGPIOCHAN0 CALL Btn0Press

 // start adverts

 IF BleAdvertStart (0,addr$,100,10000,0) ==0 THEN

 PRINT " \ nAdverts Started"

 PRINT " \ nPress button 0 to exit \ n"

 ELSE

 PRINT " \ n\ nAdvertisement not successful"

 ENDIF

 WAITEVENT

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

33 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output (When connection made with the module):

Expected Output (When no connection made):

EVDISCON

This event is thrown when there is a disconnection. It comes with two parameters:

Á Parameter 1 « Connection handle

Á Parameter 2 « Reason for the disconnection The reason, for example, can be 0x08 which signifies a link

connection supervision timeout which is used in the Proximity Profile.

=ĂbqhhĂheopĂkbĂ>hqapkkpdĂD?EĂnaoqhpĂ_k`aoĂbknĂpdaĂ¦na]okjĂkbĂ`eo_kjja_pekj§Ă_]jĂ^aĂ`apanieja`Ăand are provided

here.

 //Example :: EvDiscon.sb (See in BL600CodeSnippets.zip)

 DIM addr$: addr$= ""

 FUNCTION HndlrBleMsg (BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER)

 IF nMsgID==0 THEN

 PRINT " \ nNew Connection " ;nCtx

 ENDIF

 ENDFUNC 1

 FUNCTION Btn0Press ()

 PRINT " \ nExiting..."

 ENDFUNC 0

 FUNCTION HndlrDiscon (BYVAL hConn AS INTEGER, BYVAL nRsn AS INTEGER) AS INTEGER

 PRINT " \ nConnection " ;hConn; " Closed: 0x" ;nRsn

 ENDFUNC 0

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVDISCON CALL HndlrDiscon

 // start adverts

 IF BleAdvertStart (0,addr$,100,10000,0) ==0 THEN

 PRINT " \ nAdverts Started \ n"

 ELSE

 PRINT " \ n\ nAdvertisement not successful"

Adverts Started

Press button 0 to exit

BLE Connection 3634

Connected to a bonded master

Connection 3634 is now encrypted

A new pairing has replaced the old key

Disconnected 3634

Exiting...

Adverts Started

Press button 0 to exit

Advert stopped via timeout

Exiting...

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

34 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 ENDIF

 WAITEVENT

Expected Output:

EVCHARVAL

This event is thrown when a characteristic has been written to by a remote GATT client. It comes with three

parameters:

Á 1 - The characteristic handle that was returned when the characteristic was registered using the

function BleCharCommit()

Á 2 « The Offset

Á 3 « The Length of the data from the characteristic value

 //Example :: EvCharVal.sb (See in BL600CodeSnippets.zip)

 DIM hMyChar,rc,at$,conHndl

 //==

 // Initialise and instantiate service, characteristic, start adverts

 //==

 FUNCTION OnStartup ()

 DIM rc, hSvc, attr$, adRpt$, addr$, scRpt$: attr$= "Hi"

 //commit service

 rc= BleSvcCommit (1,BleHandleUuid16 (0x18EE) ,hSvc)

 rc=BleServiceNew (1, BleHandleUuid16 (0x18EE) , hSvc)

 //initialise char, write/read enabled, accept signed writes

 rc= BleCharNew (0x0A,BleHandleUuid16 (1) ,BleAttrMetaData (1,1,20,0,rc) ,0,0)

 //commit char initialised above, with initial value "hi" to service 'hSvc'

 rc= BleCharCommit (hSvc,attr$,hMyChar)

 //commit changes to service

 rc=BleServiceCommit (hSvc)

 rc= BleScanRptInit (scRpt$)

 //Add 1 service handle to scan report

 //rc=BleAdvRptAddUuid16(scRpt$,hSvc, - 1, - 1, - 1, - 1, - 1)

 //commit reports to GATT table - adRpt$ is empty

 rc= BleAdvRptsCommit (adRpt$,scRpt$)

 rc= BleAdvertStart (0,addr$,20,300000,0)

 ENDFUNC rc

 //==

 // Close connections so that we can run another app without problems

 //==

 SUB CloseConnections ()

 rc= BleDisconnect (conHndl)

 rc= BleAdvertStop ()

 ENDSUB

 //==

 // Ble event handler

Adverts Started

New Connection 2915

Connection 2915 Closed: 0x19

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

35 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 //==

 FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT " \ n\ n--- Disconnected from client"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT " \ n--- Connected to client"

 ENDIF

 ENDFUNC 1

 //==

 // New char value handler

 //==

 FUNCTION HandlerCharVal (BYVAL charHandle, BYVAL offset, BYVAL len)

 DIM s$

 IF charHandle == hMyChar THEN

 PRINT " \ n" ;len; " byte(s) have been written to char value attribute from

offset " ;offset

 rc= BleCharValueRead (hMyChar,s$)

 PRINT " \ nNew Char Value: " ;s$

 ENDIF

 CloseConnections ()

 ENDFUNC 1

 ONEVENT EVCHARVAL CALL HandlerCharVal

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 IF OnStartup () ==0 THEN

 rc = BleCharValueRead (hMyChar,at$)

 PRINT " \ nThe characteristic's value is " ;at$

 PRINT " \ nWrite a new value to the characteristic \ n"

 ELSE

 PRINT " \ nFailure OnStartup"

 ENDIF

 WAITEVENT

 PRINT " \ nExiting..."

Expected Output:

EVCHARHVC

This event is thrown when a value sent via an indication to a client gets acknowledged. It comes with one

parameter « the characteristic handle that was returned when the characteristic was registered using the

function BleCharCommit().

The characteristicôs value is Hi

Write a new value to the characteristic

--- Connected to client

5 byte(s) have been written to char value attribute from offset 0

New Char Value: Hello

--- Disconnected from client

Exiting...

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

36 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

// Example :: EVCHARHVC charHandle

// See example that is provided for EVCHARCCCD

EVCHARCCCD

This event is thrown when the client writes to the CCCD descriptor of a characteristic. It comes with two

parameters:

Á 1 « The characteristic handle returned when the characteristic was registered with BleCharCommit()

Á 2 « The 16-bit value in the updated CCCD attribute.

 //Example :: EvCharCccd.sb (See in BL600CodeSnippets.zip)

 DIM hMyChar,rc,at$,conHndl

 //==

 // Initialise and instantiate service, characteristic, start adverts

 //=== =============================

 FUNCTION OnStartup ()

 DIM rc, hSvc, metaSuccess, at$, attr$, adRpt$, addr$, scRpt$

 attr$= "Hi"

 DIM svcUuid : svcUuid=0x18EE

 DIM charUuid : charUuid = BleHandleUuid16 (1)

 DIM charMet : charMet = BleAttrMetaData (0,0,20,1,metaSuccess)

 DIM hSvcUuid : hSvcUuid = BleHandleUuid16 (svcUuid)

 DIM mdCccd : mdCccd = BleAttrMetadata (1,1,2,0,rc) //CCCD metadata for char

 //Create service

 rc=BleServiceNew (1,hSvcUuid,hSvc)

 //initialise char, write/read enabled, accept signed writes, indicatable

 rc= BleCharNew (0x20,charUuid,charMet,mdCccd,0)

 //commit char initialised above, with initial value "hi" to service 'hMyChar'

 rc= BleCharCommit (hSvc,attr$,hMyChar)

 //commit service to GATT table

 rc=BleServiceCommit (hSvc)

 rc= BleAdvertStart (0,addr$,20,300000,0)

 ENDFUNC rc

 //==

 // Close connections so that we can run another app without problems

 //==

 SUB CloseConnections ()

 rc= BleDisconnect (conHndl)

 rc= BleAdvertStop ()

 rc= GpioUnbindEvent (1)

 ENDSUB

 //==

 // Ble event handler

 //==

 FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT " \ n\ n--- Disconnected from client"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

37 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 PRINT " \ n--- Connected to client"

 ENDIF

 ENDFUNC 1

 //==

 // Indication acknowledgement from client handler

 //==

 FUNCTION HndlrCharHvc (BYVAL charHandle AS INTEGER) AS INTEGER

 IF charHandle == hMyChar THEN

 PRINT " \ nGot confirmation of recent indication"

 ELSE

 PRINT " \ nGot confirmation of some other indication: " ;charHandle

 ENDIF

 ENDFUNC 1

 //==

 // Called when data received via the UART

 //==

 FUNCTION HndlrUartRx () AS INTEGER

 ENDFUNC 0

 //==

 // CCCD descriptor written handler

 //==

 FUNCTION HndlrCharCccd (BYVAL charHandle, BYVAL nVal) AS INTEGER

 DIM value$

 IF charHandle==hMyChar THEN

 IF nVal & 0x02 THEN

 PRINT " \ nIndications have been enabled by client"

 value$= "hello"

 IF BleCharValueIndicate (hMyChar,value$) !=0 THEN

 PRINT " \ nFailed to indicate new value"

 ENDIF

 ELSE

 PRINT " \ nIndications have been disabled by client"

 ENDIF

 ELSE

 PRINT " \ nThis is for some other characteristic"

 ENDIF

 ENDFUNC 1

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVCHARHVC CALL HndlrCharHvc

 ONEVENT EVCHARCCCD CALL HndlrCharCccd

 ONEVENT EVUARTRX CALL HndlrUartRx

 IF OnStartup () ==0 THEN

 rc = BleCharValueRead (hMyChar,at$)

 PRINT " \ nValue of the characteristic " ;hMyChar; " is: " ;at$

 PRINT " \ nYou can write to the CCCD characteristic."

 PRINT " \ nThe BL600 will then indicate a new characteristic value \ n"

 PRINT " \ n--- Press any key to exit"

 ELSE

 PRINT " \ nFailure OnStartup"

 ENDIF

 WAITEVENT

 CloseConnections ()

 PRINT " \ nExiting..."

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

38 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output:

EVCHARSCCD

This event is thrown when the client writes to the SCCD descriptor of a characteristic. It comes with two

parameters:

Á 1 « The characteristic handle that was returned when the characteristic was registered using the

function BleCharCommit()

Á 2 « The new 16-bit value in the updated SCCD attribute.

The SCCD is used to manage broadcasts of characteristic values.

 //Example :: EvCharSccd.sb (See in BL600CodeSnippets.zip)

 DIM hMyChar,rc,chVal$,conHndl

 //==

 // Initialise and instantiate service, characteristic, start adverts

 //==

 FUNCTION OnStartup ()

 DIM rc, hSvc, attr$, adRpt$, addr$, scRpt$,rc2

 attr$= "Hi"

 DIM charMet : charMet = BleAttrMetaData (1,1,20,1,rc)

 //Create service

 rc=BleServiceNew (1,BleHandleUuid16 (0x18EE) ,hSvc)

 //initialise broadcast capable, readable, writeable

 rc= BleCharNew (0x0B,BleHandleUuid16 (1) ,charMet,0,BleAttrMetadata (1,1,1,0,rc2))

 //commit char initialised above, with initial value "hi" to service 'hMyChar'

 rc= BleCharCommit (hSvc,attr$,hMyChar)

 //commit service to GATT table

 rc=BleServiceCommit (hSvc)

 rc= BleAdvertStart (0,addr$,20,300000,0)

 ENDFUNC rc

 //==

 // Close connections so that we can run another app without problems

 //==

 SUB CloseConnections ()

 rc= BleDisconnect (conHndl)

 rc= BleAdvertStop ()

 rc= GpioUnbindEvent (1)

 ENDSUB

Value of the characteristic 1346437121 is: Hi

You can write to the CCCD characteristic.

The BL600 will then indicate a new characteristic value

--- Press any key to exit

--- Connected to client

Indications have been enabled by client

Got confirmation of recent indication

Exiting...

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

39 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 //==

 // Broadcast characterstic value

 //==

 FUNCTION PrepAdvReport ()

 dim adRpt$, scRpt$, svcDta$

 //initialise new advert report

 rc= BleAdvRptinit (adRpt$, 2, 0, 0)

 //encode service UUID into service data string

 rc= BleEncode16 (svcDta$, 0x18EE, 0)

 //append characteristic value

 svcDta$ = svcDta$ + chVal$

 //append service data to advert report

 rc= BleAdvRptAppendAD (adRpt$, 0x16, svcDta$)

 //commit new advert report, and empty scan report

 rc= BleAdvRptsCommit (adRpt$, scRpt$)

 ENDFUNC rc

 //==

 // Reset advert report

 //==

 FUNCTION ResetAdvReport ()

 dim adRpt$, scRpt$

 //initialise new advert report

 rc= BleAdvRptinit (adRpt$, 2, 0, 20)

 //commit new advert report, and empty scan report

 rc= BleAdvRptsCommit (adRpt$, scRpt$)

 ENDFUNC rc

 //==

 // Ble event handler

 //==

 FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT " \ n\ n--- Disconnected from client"

 dim addr$

 rc= BleAdvertStart (0,addr$,20,300000,0)

 IF rc==0 THEN

 PRINT " \ nYou should now see the new characteristic value in the

advertisment data"

 ENDIF

 ELSEIF nMsgID==0 THEN

 PRINT " \ n--- Connected to client"

 ENDIF

 ENDFUNC 1

 //==

 // Called when data arrives via UART

 //==

 FUNCTION HndlrUartRx ()

 ENDFUNC 0

 //==

 // CCCD descriptor written handler

 //==

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

40 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 FUNCTION HndlrCharSccd (BYVAL charHandle, BYVAL nVal) AS INTEGER

 DIM value$

 IF charHandle==hMyChar THEN

 IF nVal & 0x01 THEN

 PRINT " \ nBroadcasts have been enabled by client"

 IF PrepAdvReport () ==0 THEN

 rc= BleDisconnect (conHndl)

 PRINT " \ nDisconnecting..."

 ELSE

 PRINT " \ nError Committing advert reports: " ;integer.h 'rc

 ENDIF

 ELSE

 PRINT " \ nBroadcasts have been disabled by client"

 IF ResetAdvReport () ==0 THEN

 PRINT " \ nAdvert reports reset"

 ELSE

 PRINT " \ nError Resetting advert reports: " ;integer.h 'rc

 ENDIF

 ENDIF

 ELSE

 PRINT " \ nThis is for some other characteristic"

 ENDIF

 ENDFUNC 1

 //==

 // New char value handler

 //==

 FUNCTION HndlrCharVal (BYVAL charHandle, BYVAL offset, BYVAL len)

 DIM s$

 IF charHandle == hMyChar THEN

 rc= BleCharValueRead (hMyChar,chVal$)

 PRINT " \ nNew Char Value: " ;chVal$

 ENDIF

 ENDFUNC 1

 //==

 // Called after a disconnection

 //==

 FUNCTION HndlrDiscon (hConn, nRsn)

 dim addr$

 rc= BleAdvertStart (0,addr$,20,300000,0)

 ENDFUNC 1

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVCHARSCCD CALL HndlrCharSccd

 ONEVENT EVUARTRX CALL HndlrUartRx

 ONEVENT EVCHARVAL CALL HndlrCharVal

 ONEVENT EVDISCON CALL HndlrDiscon

 IF OnStartup () ==0 THEN

 rc = BleCharValueRead (hMyChar,chVal$)

 PRINT " \ nCharacteristic Value: " ;chVal$

 PRINT " \ nWrite a new value to the characteristic, then enable broadcasting. \ nThe

module will then disconnect and broadcast the new characteristic value."

 PRINT " \ n--- Press any key to exit \ n"

 ELSE

 PRINT " \ nFailure OnStartup"

 ENDIF

 WAITEVENT

 CloseConnections ()

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

41 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 PRINT " \ nExiting..."

Expected Output:

EVCHARDESC

This event is thrown when the client writes to writable descriptor of a characteristic which is not a CCCD or

SCCD as they are catered for with their own dedicated messages. It comes with two parameters:

Á 1 « The characteristic handle that was returned when the characteristic was registered using the

function BleCharCommit()

Á 2 « An index into an opaque array of handles managed inside the characteristic handle.

Both parameters are supplied as-is as the first two parameters to the function BleCharDescRead().

 //Example :: EvCharDesc.sb (See in BL600CodeSnippets.zip)

 DIM hMyChar,rc,at$,conHndl, hOtherDescr

 //==

 // Initialise and instantiate service, characteristic, start adverts

 //==

 FUNCTION OnStartup$ ()

 DIM rc, hSvc, at$, adRpt$, addr$, scRpt$, hOtherDscr,attr$, attr2$, rc2

 attr$= "Hi"

 DIM charMet : charMet = BleAttrMetaData (1,0,20,0,rc)

 //Commit svc with handle 'hSvcUuid'

 rc=BleServiceNew (1,BleHandleUuid16 (0x18EE) ,hSvc)

 //initialise characteristic - readable

 rc= BleCharNew (0x02,BleHandleUuid16 (1) ,charMet,0,0)

 //Add user descriptor - variable length

 attr$= "my char desc"

 rc= BleCharDescUserDesc (attr$,BleAttrMetadata (1,1,20,1,rc2))

 AssertRC (rc2,20)

 AssertRC (rc,33)

 //commit char initialised above, with initial value "char value" to service

'hSvc'

 attr2$= "char value"

 rc= BleCharCommit (hSvc,attr2$,hMyChar)

Characteristic Value: Hi

Write a new value to the characteristic, then enable broadcasting.

The module will then disconnect and broadcast the new characteristic value.

--- Press any key to exit

--- Connected to client

New Char Value: hello

Broadcasts have been enabled by client

Disconnecting...

--- Disconnected from client

You should now see the new characteristic value in the advertisment data

Exiting...

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

42 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 //commit service to GATT table

 rc=BleServiceCommit (hSvc)

 rc= BleAdvertStart (0,addr$,20,300000,0)

 ENDFUNC attr$

 //==

 // Close connections so that we can run another app without problems

 //==

 SUB CloseConnections ()

 rc= BleDisconnect (conHndl)

 rc= BleAdvertStop ()

 rc= GpioUnbindEvent (1)

 ENDSUB

 //==

 // Ble event handler

 //==

 FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==1 THEN

 PRINT " \ n\ n--- Disconnected from client"

 EXITFUNC 0

 ELSEIF nMsgID==0 THEN

 PRINT " \ n--- Connected to client"

 ENDIF

 ENDFUNC 1

 //==

 // Called when data arrives via UART

 //==

 FUNCTION HndlrUartRx ()

 ENDFUNC 0

 //==

 // Client has written to writeable descriptor

 //==

 FUNCTION HndlrCharDesc (BYVAL hChar AS INTEGER, BYVAL hDesc AS INTEGER) AS INTEGER

 dim duid,a$,rc

 IF hChar == hMyChar THEN

 rc = BleCharDescRead (hChar,hDesc,0,20,duid,a$)

 IF rc ==0 THEN

 PRINT " \ nNew value for desriptor " ;hDesc; " with uuid " ;integer.h 'duid;"

is ";a$

 ELSE

 PRINT " \ nCould not read the descriptor value"

 ENDIF

 ELSE

 PRINT " \ nThis is for some other characteristic"

 ENDIF

 ENDFUNC 1

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVCHARDESC CALL HndlrCharDesc

 ONEVENT EVUARTRX CALL HndlrUartRx

 PRINT " \ nOther Descriptor Value: " ;OnStartup$ ()

 PRINT " \ nWrite a new value \ n--- Press any key to exit \ n"

 WAITEVENT

 CloseConnections ()

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

43 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 PRINT " \ nExiting..."

Expected Output:

EVVSPRX

This event is thrown when the Virtual Serial Port service is open and data has arrived from the peer.

EVVSPTXEMPTY

This event is thrown when the Virtual Serial Port service is open and the last block of data in the transmit

buffer is sent via a notify or indicate. See VSP (Virtual Serial Port) Events

EVNOTIFYBUF

When in a connection and attribute data is sent to the GATT Client using a notify procedure (for example

using the function BleCharValueNotify() or when a Write_with_no_response is sent by the Gatt Client to a

remote server, they are stored in temporary buffers in the underlying stack. There is finite number of these

temporary buffers and, if they are exhausted, the notify function or the write_with_no_resp command fails

with a result code of 0x6803 (BLE_NO_TX_BUFFERS). Once the attribute data is transmitted over the air,

given there are no acknowledges for Notify messages, the buffer is freed to be reused.

This event is thrown when at least one buffer has been freed and so the smartBASIC application can handle

this event to retrigger the data pump for sending data using notifies or writes_with_no_resp commands.

Note: When sending data using Indications, this event is not thrown because those messages have to

be confirmed by the client which results in a EVCHARHVC message to the smartBASIC

application. Likewise, writes which are acknowledged also do not consume these buffers.

 / /Example :: EvNotifyBuf.sb (See in BL600CodeSnippets.zip)

 DIM hMyChar,rc,at$,conHndl,ntfyEnabled

 //==

 // Initialise and instantiate service, characteristic, start adverts

 //==

 FUNCTION OnStartup ()

 DIM rc, hSvc, at$, attr$, adRpt$, addr$, scRpt$

 attr$= "Hi"

 DIM mdCccd : mdCccd = BleAttrMetadata (1,1,2,0,rc) //CCCD metadata for char

 //Commit svc with handle 'hSvc'

 rc=BleServiceNew (1, BleHandleUuid16 (0x18EE) , hSvc)

 rc= BleSvcCommit (1,BleHandleUuid16 (0x18EE) ,hSvc)

 //initialise char, write/read enabled, accept signed writes, notifiable

 rc= BleCharNew (0x12,BleHandleUuid16 (1) ,BleAttrMetaData (1,0,20,0,rc) ,mdCccd,0)

 //commit char initialised above, with initial value "hi" to service 'hMyChar'

 rc= BleCharCommit (hSvc,attr$,hMyChar)

 //commit changes to service

Other Descriptor Value: my char desc

Write a new value

--- Press any key to exit

--- Connected to client

New value for desriptor 0 with uuid FE012901 is hello

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

44 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 rc=BleServiceCommit (hSvc)

 rc= BleScanRptInit (scRpt$)

 //Add 1 service handle to scan report

 rc= BleAdvRptAddUuid16 (scRpt$,hSvc, - 1, - 1, - 1, - 1, - 1)

 //commit reports to GATT table - adRpt$ is empty

 rc= BleAdvRptsCommit (adRpt$,scRpt$)

 rc= BleAdvertStart (0,addr$,50,0,0)

 ENDFUNC rc

 //==

 // Close connections so that we can run another app without problems

 //==

 SUB CloseConnections ()

 rc= BleDisconnect (conHndl)

 rc= BleAdvertStop ()

 ENDSUB

 SUB SendData ()

 DIM tx$, count

 IF ntfyEnabled then

 PRINT " \ n--- Notifying"

 DO

 tx$= "SomeData"

 rc= BleCharValueNotify (hMyChar,tx$)

 count=count+1

 UNTIL rc!=0

 PRINT " \ n--- Buffer full"

 PRINT " \ nNotified " ;count; " times"

 ENDIF

 ENDSUB

 //==

 // Ble event handler

 //==

 FUNCTION HndlrBleMsg (BYVAL nMsgId, BYVAL nCtx)

 conHndl=nCtx

 IF nMsgID==0 THEN

 PRINT " \ n--- Connected to client"

 ELSEIF nMsgID THEN

 PRINT " \ n--- Disconnected from client"

 EXITFUNC 0

 ENDIF

 ENDFUNC 1

 //==

 // Tx Buffer free handler

 //==

 FUNCTION HndlrNtfyBuf ()

 SendData ()

 ENDFUNC 0

 //==

 // CCCD descriptor written handler

 //==

 FUNCTION HndlrCharCccd (BYVAL charHandle, BYVAL nVal) AS INTEGER

 DIM value$,tx$

 IF charHandle==hMyChar THEN

 IF nVal THEN

 PRINT " : Notifications have been enabled by client"

 ntfyEnabled=1

 tx$= "Hello"

 rc= BleCharValueNotify (hMyChar,tx$)

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

45 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 ELSE

 PRINT " \ nNotifications have been disabled by client"

 ntfyEnabled=0

 ENDIF

 ELSE

 PRINT " \ nThis is for some other characteristic"

 ENDIF

 ENDFUNC 1

 ONEVENT EVNOTIFYBUF CALL HndlrNtfyBuf

 ONEVENT EVBLEMSG CALL HndlrBleMsg

 ONEVENT EVCHARCCCD CALL HndlrCharCccd

 IF OnStartup () ==0 THEN

 rc = BleCharValueRead (hMyChar,at$)

 PRINT " \ nYou can connect and write to the CCCD characteristic."

 PRINT " \ nThe BL600 will then send you data until buffer is full \ n"

 ELSE

 PRINT " \ nFailure OnStartup"

 ENDIF

 WAITEVENT

 CloseConnections ()

 PRINT " \ nExiting..."

Expected Output:

Miscellaneous Functions

This section describes all BLE-related functions that are not related to advertising, connection, security

manager, or GATT.

BleTxPowerSet

FUNCTION

This function sets the power of all packets that are transmitted subsequently.

The actual value is determined by scanning through the value list (4, 0, -4, -8, -12, -16, -20, -30 , -55) so that

the highest value that is less than the desired value is selected. If the desired value is higher than -55, -55 is

set.

For example, setting 1000 results in +4, -3 results in -4, -100 results in -55.

You can connect and write to the CCCD characteristic.

The BL600 will then send you data until buffer is full

--- Connected to client

Notifications have been disabled by clien t : Notifications have been

enabled by client

--- Notifying

--- Buffer full

Notified 1818505336 times

Exiting...

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

46 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

At any time SYSINFO(2008) returns the actual transmit power setting. When in command mode, use the

command AT I 2008.

BLETXPOWERSET(nTxPower)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

nTxPower

byVal nTxPower AS INTEGER

Specifies the new transmit power in dBm units to be used for all subsequent Tx packets.

The actual value is determined by scanning through the value list (4, 0, -4, -8, -12, -16, -

20, -30 , -55) so that the highest value that is less than the desired value is selected. If the
desired value is higher than -55, -55 is set.

Interactive
Command

No

//Example :: BleTxPowerSet.sb (See in BL600CodeSnippets.zip)

DIM rc,dp

dp=1000 : rc = BleTxPowerSet (dp)

PRINT " \ nrc = " ;rc

PRINT " \ nTx power : desired= " ;dp, " actual= " ; SysInfo (2008)

dp=8 : rc = BleTxPowerSet (dp)

PRINT " \ nTx power : desired= " ;dp, " " , " actual= " ; SysInfo (2008)

dp=2 : rc = BleTxPowerSet (dp)

PRINT " \ nTx power : desired= " ;dp, " " , " actual= " ; SysInfo (2008)

dp=- 10 : rc = BleTxPowerSet (dp)

PRINT " \ nTx power : desired= " ;dp, " " , " actual= " ; SysInfo (2008)

dp=- 25 : rc = BleTxPowerSet (dp)

PRINT " \ nTx power : desired= " ;dp, " " , " actual= " ; SysInfo (2008)

dp=- 45 : rc = BleTxPowerSet (dp)

PRINT " \ nTx power : desired= " ;dp, " " , " actual= " ; SysInfo (2008)

dp=- 1000 : rc = BleTxPowerSet (dp)

PRINT " \ nTx power : desired= " ;dp, " actual= " ; SysInfo (2008)

Expected Output:

BLETXPOWERSET is an extension function.

BleTxPwrWhilePairing

FUNCTION

rc = 0

Tx power : desired= 1000 actual= 4

Tx power : desired= 8 actua l= 4

Tx power : desired= 2 actual= 0

Tx power : desired= - 10 actual= - 12

Tx power : desired= - 25 actual= - 30

Tx power : desired= - 45 actual= - 55

Tx power : desired= - 1000 actual= - 55

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

47 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

This function sets the transmit power of all packets that are transmitted while a pairing is in progress. This

mode of pairing is referred to as Whsiper Mode Pairing. The actual value is clipped to the transmit power for

normal operation which is set using BleTxPowerSet() function.

The actual value is determined by scanning through the value list (4, 0, -4, -8, -12, -16, -20, -30 , -55) so that

the highest value that is less than the desired value is selected. If the desired value is higher than -55, -55 is

set.

For example, setting 1000 results in +4, -3 results in -4, -100 results in -55.

At any time, SYSINFO(2018) returns the actual transmit power setting. Or when in command mode, use the

command AT I 2018.

BLETXPWRWHILEPAIRING(nTxPower)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

nTxPower

byVal nTxPower AS INTEGER

Specifies the new transmit power in dBm units to be used for all subsequent Tx packets.

The actual value is determined by scanning through the value list (4, 0, -4, -8, -12, -16, -

20, -30 , -55) so that the highest value that is less than the desired value is selected. If the
desired value is higher than -55, -55 is set.

Interactive
Command

No

//Example :: BleTxPwrWhilePairing.sb (See in BL600CodeSnippets.zip)

DIM rc,dp

dp=1000 : rc = BleTxPwrWhilePairing (dp)

PRINT " \ nrc = " ;rc

PRINT " \ nTx power while pairing: desired= " ;dp, " actual= " ; SysInfo (2018)

dp=8 : rc = BleTxPwrWhilePairing (dp)

PRINT " \ nTx power while pairing: desired= " ;dp, " " , " actual= " ; SysInfo (2018)

dp=2 : rc = BleTxPwrWhilePairing (dp)

PRINT " \ nTx power while pairing: desired= " ;dp, " " , " actual= " ; SysInfo (2018)

dp=- 10 : rc = BleTxPwrWhilePairing (dp)

PRINT " \ nTx power while pairing: desired= " ;dp, " actual= " ; SysInfo (2018)

dp=- 25 : rc = BleTxPwrWhilePairing (dp)

PRINT " \ nTx power while pairing: desired= " ;dp, " actual= " ; SysInfo (2018)

dp=- 45 : rc = BleTxPwrWhilePairing (dp)

PRINT " \ nTx power while pairing: desired= " ;dp, " actual= " ; SysInfo (2018)

dp=- 1000 : rc = BleTxPwrWhilePairing (dp)

PRINT " \ nTx power while pairing: desired= " ;dp, " actual= " ; SysInfo (2018)

Expected Output:

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

48 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BLETXPOWERSET is an extension function.

BleConfigDcDc

SUBROUTINE

This routine is used to configure the DC to DC converter to one of 3 states:- OFF, ON or AUTOMATIC.

Note: Until a future revision when the chipset vendor has fixed a hardware issue at the silicon level this

function will not function as stated and any nNewState value will be interpreted as OFF

BLECONFIGDCDC(nNewState)

Returns None

Arguments

nNewState

byVal nNewState AS INTEGER.
Configure the internal DC to DC converter as follows:

0 Off

2 Auto

All other values On

Interactive
Command

No

 BleConfigDcDc (2) //Set for automatic operation

BLECONFIGDCDC is an extension function.

Advertising Functions

This section describes all advertising-related routines.

An advertisement consists of the following:

Á A packet of information with a header identifying it as one of four types

Á An optional payload that consists of multiple advertising records, referred to as AD in the rest of this

manual.

Each AD record consists of up to three fields:

Á Field 1 « One octet in length and contains the number of octets that follow it that belong to that

record.

Á Field 2 « One octet and is a tag value which identifies the type of payload that starts at the next octet.

Daj_aĂpdaĂl]uhk]`Ă`]p]ĂeoĂ¦hajcpdĂ« -§*Ă

Á A special NULL AD record consists of only one field, that is, the length field, when it contains just the

00 value.

PdaĂola_ebe_]pekjĂ]hokĂ]hhksoĂ_qopkiĂ=@Ăna_kn`oĂpkĂ^aĂ_na]pa`ĂqoejcĂpdaĂ¦I]jqb]_pqnanĂOla_ebe_Ă@]p]§Ă=@Ă

record.

Tx power while pairing: desired= 1000 actual= 4

Tx power while pairing: desired= 8 actual= 4

Tx power while pairing: desired= 2 actual= 0

Tx power while pairing: desired= - 10 actual= - 12

Tx power while pairing: desired= - 25 actual= - 30

Tx power while pairing: desired= - 45 actual= - 55

Tx power while pairing: desired= - 1000 actual= - 55

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

49 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Note: Refer to the Supplement to the Bluetooth Core Specification, Version 1, Part A which has the

latest list of all AD records. You will need to register as at least an Adopter, which is free, to gain

access to this information.

BleAdvertStart

FUNCTION

This function causes a BLE advertisement event as per the Bluetooth Specification. An advertisement event

consists of an advertising packet in each of the three advertising channels.

The type of advertisement packet is determined by the nAdvType argument and the data in the packet is

initialised, created, and submitted by the BLEADVRPTINIT, BLEADVRPTADDxxx, and BLEADVRPTCOMMIT

functions respectively.

If the Advert packet type (nAdvType) is specified as 1 (ADV_DIRECT_IND) then the peerAddr$ string must not

be empty and should be a valid address. When advertising with this packet type, the timeout is automatically

set to 1280 ms.

When filter policy is enabled, the whitelist consisting of all bonded masters is submitted to the underlying

stack so that only those bonded masters result in scan and connection requests being serviced.

Note: nAdvTimeout is rounded up to the nearest 1000 msec.

BLEADVERTSTART (nAdvType,peerAddr$,nAdvInterval, nAdvTimeout, nFilterPolicy)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

If a 0x6A01 resultcode is received, it implies whitelist has been enabled but the Flags AD in the advertising
report is set for limited and/or general discoverability. The solution is to resubmit a new advert report which
is made up so that the nFlags argument to BleAdvRptInit() function is 0.

The BT 4.0 spec disallows discoverability when a whitelist is enabled during advertisement see Volume 3,
Sections 9.2.3.2 and 9.2.4.2.

Arguments

nAdvType

byVal nAdvType AS INTEGER.

Specifies the advertisement type as follows:

0 ADV_IND « Invites connection requests

1 ADV_DIRECT_IND « Invites connection from addressed device

2 ADV_SCAN_IND « Invites scan requests for more advert data

3 ADV_NONCONN_IND « Does not accept connections and/or active scans

http://ews-support.lairdtech.com/
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=245130

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

50 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

peerAddr$

byRef peerAddr$ AS STRING

It can be an empty string that is omitted if the advertisement type is not ADV_DIRECT_IND.
This is only required when nAdvType == 1.

When not empty, a valid address string is exactly seven octets long (such as
\00\11\22\33\44\55\66), where the first octet is the address type and the rest of the 6
octets is the usual MAC address in big endian format (so that most significant octet of the
address is at offset 1), whether public or random.

0 Public

1 Random Static

2 Random Private Resolvable

3 Random Private Non-resolvable

All other values are illegal.

nAdvInterval

byVal nAdvInterval AS INTEGER.

The interval between two advertisement events (in milliseconds).

An advertisement event consists of a total of three packets being transmitted in the three
advertising channels.

Interval range: Between 20 and 10240 milliseconds.

nAdvTimeout

byVal nAdvTimeout AS INTEGER.

The time after which the module stops advertising (in milliseconds).

Value range: Between 0 and 16383000 milliseconds (rounded up to the nearest one
seconds or 1000 ms).

A value of 0 means disable the timeout, but note that if limited advert modes was specified
in BleAdvRptInit() then the timeout is capped to 180000 ms as per the Bluetooth
Specification. When the advert type specified is ADV_DIRECT_IND , the timeout is
automatically set to 1280 ms as per the Bluetooth Specification.

Warning: To save power, do not set this to (e.g.) 100 ms.

nFilterPolicy

byVal nFilterPolicy AS INTEGER.

Specifies the filter policy for the whitelist consisting of all bonded masters as follows:

0 Disable whitelist

1 Filter scan request; allow connection request from any

2 Filter connection request; allow scan request from any

3 Filter scan request and connection request

If the filter policy is not 0, the whitelist is enabled and filled with all the addresses of all
the devices in the trusted device database.

Interactive
Command

No

 //Example :: BleAdvertStart.sb (See in BL600CodeSnippets.zip)

 DIM addr$: addr$= ""

 FUNCTION HndlrBlrAdvTimOut ()

 PRINT " \ nAdvert stopped via timeout"

 PRINT " \ nExiting..."

 ENDFUNC 0

 //The advertising interval is set to 25 milliseconds. The module will stop

 //advertising after 60000 ms (1 minute)

 IF BleAdvertStart (0,addr$,25,60000,0) ==0 THEN

 PRINT " \ nAdverts Started"

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

51 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 PRINT " \ nIf you search for bluetooth devices on your device, you should see

'Laird BL600'"

 ELSE

 PRINT " \ n\ nAdvertisement not successful"

 ENDIF

 ONEVENT EVBLE_ADV_TIMEOUT CALL HndlrBlrAdvTimOut

 WAITEVENT

Expected Output:

BLEADVERTSTART is an extension function.

BleAdvertStop

FUNCTION

This function causes the BLE module to stop advertising.

BLEADVERTSTOP ()

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments None

Interactive
Command

No

 //Example :: BleAdvertStop.sb (See in BL600CodeSnippets.zip)

 DIM addr$: addr$= ""

 DIM rc

 FUNCTION HndlrBlrAdvTimOut ()

 PRINT " \ nAdvert stopped via timeout"

 PRINT " \ nExiting..."

 ENDFUNC 0

 FUNCTION Btn0Press ()

 IF BleAdvertStop () ==0 THEN

 PRINT " \ nAdvertising Stopped"

 ELSE

 PRINT " \ n\ nAdvertising failed to stop"

 ENDIF

 PRINT " \ nExiting..."

 ENDFUNC 0

Adverts Started

If you search for bluetooth devices on your device, you should see 'Laird

BL600'

Advert stopped via timeout

Exiting...

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

52 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 IF BleAdvertStart (0,addr$,25,60000,0) ==0 THEN

 PRINT " \ nAdverts Started. Press button 0 to stop. \ n"

 ELSE

 PRINT " \ n\ nAdvertisement not successful"

 ENDIF

 rc = GpioSetFunc (16,1,2)

 rc = GpioBindEvent (0,16,1)

 ONEVENT EVBLE_ADV_TIMEOUT CALL HndlrBlrAdvTimOut

 ONEVENT EVGPIOCHAN0 CALL Btn0Press

 WAITEVENT

Expected Output:

BLEADVERTSTOP is an extension function.

BleAdvRptInit

FUNCTION

This function is used to create and initialise an advert report with a minimal set of ADs (advertising records)

and store it the string specified. It is not advertised until BLEADVRPTSCOMMIT is called.

This report is for use with advertisement packets.

BLEADVRPTINIT(advRpt$, nFlagsAD, nAdvAppearance, nMaxDevName)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

advRpt$
byRef advRpt$ AS STRING.

This will contain an advertisement report.

nFlagsAD

byVal nFlagsAD AS INTEGER.

Specifies the flags AD bits where bit 0 is set for limited discoverability and bit 1 is set for

general discoverability. Bit 2 will be forced to 1 and bits 3 & 4 will be forced to 0. Bits 3
to 7 are reserved for future use by the BT SIG and must be set to 0.

Note: If a whitelist is enabled in the BleAdvertStart() function then both Limited and

General Discoverability flags MUST be 0 as per the BT 4.0 specification (Volume
3, Sections 9.2.3.2 and 9.2.4.2)

nAdvAppearance

byVal nAdvAppearance AS INTEGER.

Determines whether the appearance advert should be added or omitted as follows:

0 Omit appearance advert

1
Add appearance advert as specified in the GAP service which is supplied via

the BleGapSvcInit() function.

nMaxDevName
byVal nMaxDevName AS INTEGER.

The n leftmost characters of the device name specified in the GAP service. If this value is
set to 0, then the device name is not included.

Adverts Started. Press button 0 to stop.

Advertising Stopped

Exiting...

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

53 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Interactive
Command

No

 //Example :: BleAdvRptInit.sb (See in BL600CodeSnippets.zip)

 DIM advRpt$: advRpt$= ""

 DIM discovMode : discovMode=0

 DIM advAppearance : advAppearance = 1

 DIM maxDevName : maxDevName = 10

 IF BleAdvRptInit (advRpt$, discovMode, advAppearance, maxDevName) ==0 THEN

 PRINT " \ nAdvert report initialised"

 ENDIF

Expected Output:

BLEADVRPTINIT is an extension function.

BleScanRptInit

FUNCTION

This function is used to create and initialise a scan report which is sent in a SCAN_RSP message. It is not used

until BLEADVRPTSCOMMIT is called.

This report is for use with SCAN_RESPONSE packets.

BLESCANRPTINIT(scanRpt)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

scanRpt
byRef scanRpt ASSTRING

This contains a scan report.

Interactive
Command

No

 //Example :: BleScanRptInit.sb (See in BL600CodeSnippets.zip)

 DIM scnRpt$: scnRpt$= ""

 IF BleScanRptInit (scnRpt$) ==0 THEN

 PRINT " \ nScan report initialised"

 ENDIF

Expected Output:

BLESCANRPTINIT is an extension function.

BleAdvRptGetSpace

FUNCTION

Advert report initialised

Scan report initialised

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

54 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

This function returns the free space in the advert advRpt$

BLEADVRPTGETSPACE(advRpt)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

advRpt$
byRef advRpt$ AS STRING.

This contains an advert/scan report.

Interactive
Command

No

dim rc, s$, dn$

rc= BleScanRptInit (s$)

dn$ = BleGetDeviceName$ ()

'//Add device name to scan report

rc= BleAdvRptAppendAD (s$,0x09,dn$)

print " \ nFree space in scan report: " ; BleAdvRptGetSpace (s$) ; " bytes"

Expected Output:

BLESCANRPTINIT is an extension function.

BleAdvRptAddUuid16

FUNCTION

This function is used to add a 16 bit UUID service list AD (Advertising record) to the advert report. This

consists of all of the 16 bit service UUIDs that the device supports as a server.

BLEADVRPTADDUUID16 (advRpt, nUuid1, nUuid2, nUuid3, nUuid4, nUuid5, nUuid6)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

AdvRpt
byRef AdvRpt AS STRING.

The advert report onto which the 16 bit uuids AD record is added.

Uuid1

byVal uuid1 AS INTEGER
UUID in the range 0 to FFFF; if the value is outside that range it is ignored.

Set the value to -1 to have it ignored and then all further UUID arguments will also be
ignored.

Uuid2

byVal uuid2 AS INTEGER
UUID in the range 0 to FFFF; if the value is outside that range it is ignored.

Set the value to -1 to have it ignored and then all further UUID arguments will also be
ignored.

Uuid3
byVal uuid3 AS INTEGER
UUID in the range 0 to FFFF; if the value is outside that range it is ignored.

Free space in scan report: 18 bytes

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

55 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Set the value to -1 to have it ignored and then all further UUID arguments will also be
ignored.

Uuid4

byVal uuid4 AS INTEGER
UUID in the range 0 to FFFF; if the value is outside that range it is ignored.

Set the value to -1 to have it ignored and then all further UUID arguments will also be
ignored.

Uuid5

byVal uuid5 AS INTEGER

UUID in the range 0 to FFFF; if the value is outside that range it is ignored.

Set the value to -1 to have it ignored and then all further UUID arguments will also be
ignored.

Uuid6

byVal uuid6 AS INTEGER

UUID in the range 0 to FFFF; if the value is outside that range it is ignored.

Set the value to -1 to have it ignored.

Interactive
Command

No

 //Example :: BleAdvAddUuid16.sb (See in BL600CodeSnippets.zip)

 DIM advRpt$, rc

 DIM discovMode : discovMode=0

 DIM advAppearance : advAppearance = 1

 DIM maxDevName : maxDevName = 10

 rc = BleAdvRptInit (advRpt$, discovMode, advAppearance, maxDevName)

 //BatteryService = 0x180F

 //DeviceInfoService = 0x180A

 IF BleAdvRptAddUuid16 (advRpt$,0x180F,0x180A, - 1, - 1, - 1, - 1) ==0 THEN

 PRINT " \ nUUID Service List AD added"

 ENDIF

 //Only the battery and device information services are included in the advert report

Expected Output:

BLEADVRPTADDUUID16 is an extension function.

BleAdvRptAddUuid128

FUNCTION

This function is used to add a 128 bit UUID service list AD (Advertising record) to the advert report specified.

Given that an advert can have a maximum of only 31 bytes, it is not possible to have a full UUID list unless

there is only one to advertise.

BLEADVRPTADDUUID128 (advRpt, nUuidHandle)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

advRpt byRef AdvRpt AS STRING.

UUID Service List AD added

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

56 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

The advert report into which the 128 bit uuid AD record is to be added.

nUuidHandle
byVal nUuidHandle AS INTEGER
This is handle to a 128 bit uuid which was obtained using the function
BleHandleUuid128() or some other function which returns one, such as BleVSpOpen()

Interactive
Command

No

 //Example :: BleAdvAddUuid1 28.sb (See in BL600CodeSnippets.zip)

 DIM tx$,scRpt$,adRpt$,addr$, hndl

 scRpt$= ""

 PRINT BleScanRptInit (scRpt$)

 //Open the VSP

 PRINT BleVSpOpen (128,128,0,hndl)

 //Advertise the VSPservice in a scan report

 PRINT BleAdvRptAddUuid128 (scRpt$,hndl)

 adRpt$= ""

 PRINT BleAdvRptsCommit (adRpt$,scRpt$)

 addr$= "" //because we are not doing a DIRECT advert

 PRINT BleAdvertStart (0,addr$,20,30000,0)

Expected Output:

BLEADVRPTADDUUID128 is an extension function.

BleAdvRptAppendAD

FUNCTION

This function adds an arbitrary AD (Advertising record) field to the advert report. An AD element consists of a

LEN:TAG:DATA construct where TAG can be any value from 0 to 255 and DATA is a sequence of octets.

BLEADVRPTAPPENDAD (advRpt, nTag, stData$)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

AdvRpt
byRef AdvRpt AS STRING.

The advert report onto which the AD record is to be appended.

nTag
TAG field for the record.

Valid range: 0 to FF

stData$
byRef stData$ AS STRING
This is an octet string which can be 0 bytes long. The maximum length is governed by
the space available in AdvRpt (a maximum of 31 bytes long).

Interactive
Command

No

 //Example :: BleAdvRptAppendAD.sb (See in BL600CodeSnippets.zip)

 DIM scnRpt$,ad$

 ad$= " \ 01\ 02\ 03\ 04"

00000

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

57 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 PRINT BleScanRptInit (scnRpt$)

 IF BleAdvRptAppendAD (scnRpt$,0x31,ad$) ==0 THEN //6 bytes will be used up in the

report

 PRINT " \ nAD with data '" ;ad$; "' was appended to the advert report"

 ENDIF

Expected Output:

BLEADVRPTAPPENDAD is an extension function.

BleGetADbyIndex

FUNCTION

This function is used to extract a copy of the nth (zero based) advertising data (AD) element from a string

which is assumed to contain the data portion of an advert report, incoming or outgoing.

Note: If the last AD element is malformed, it will be treated as not existing. For example, it will be

malformed if the length byte for that AD element suggests that more data bytes are required

than actually exist in the report string.

BLEGETADBYINDEX (nIndex, rptData$, nADtag, ADval$)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

nIndex
byVAL nIndex AS INTEGER

This is a zero based index of the AD element that will be copied into the output data
parameter ADval$.

rptData$

byREF rptData$ AS STRING.

This parameter is a string that contains concatenated AD elements which will have been

either constructed for an outgoing advert or will have been received in a scan (depends
on module variant)

nADTag
byREF nADTag AS INTEGER
When the nth index is found, the single byte tag value for that AD element is returned
in this parameter.

ADval$
byREF ADval$ AS STRING
When the nth index is found, the data excluding single byte the tag value for that AD
element is returned in this parameter.

Interactive
Command

No

 //Example :: BleAdvGetADbyIndex.sb (See in BL600CodeSnippets.zip)

 DIM rc, ad1$, ad2$, fullAD$, nADTag, ADval$

 '//AD with length = 6 bytes, tag = 0xDD

 ad1$= " \ 06\ DD\ 11\ 22\ 33\ 44\ 55"

0

AD with data ' \ 01\ 02\ 03\ 04' was appended to the advert report

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

58 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

06DD112233445507EEAABBCCDDEEFF

First AD element with tag 0x000000DD is 1122334455

Second AD element with tag 0x000000EE is AABBCCDDEEFF

Error reading AD: 00006060

 '//AD with length = 7 bytes, tag = 0xDA

 ad2$= " \ 07\ EE\ AA\ BB\ CC\ DD\ EE\ FF"

 fullAD$ = ad1$ + ad2$

 PRINT " \ n\ n" ; Strhexize$ (fullAD$) ; " \ n"

 rc= BleGetADbyIndex (0, fullAD$, nADTag, ADval$)

 IF rc==0 THEN

 PRINT " \ nFirst AD element with tag 0x" ; INTEGER.H'nADTag ;" is

";StrHexize$(ADval$)

 ELSE

 PRINT " \ nError reading AD: " ;INTEGER.H 'rc

 ENDIF

 rc= BleGetADbyIndex (1, fullAD$, nADTag, ADval$)

 IF rc==0 THEN

 PRINT " \ nSecond AD element with tag 0x" ; INTEGER.H'nADTag ;" is

";StrHexize$(ADval$)

 ELSE

 PRINT " \ nError reading AD: " ; INTEGER.H'rc

 ENDIF

 '//Will fail because there are only 2 AD elements

 rc= BleGetADbyIndex (2, fullAD$, nADTag, ADval$)

 IF rc==0 THEN

 PRINT " \ nThird AD element with tag 0x" ; INTEGER.H'nADTag ;" is

";StrHexize$(ADval$)

 ELSE

 PRINT " \ nError reading AD: " ; INTEGER.H'rc

 ENDIF

Expected Output:

BLEGETADBYINDEX is an extension function.

BleGetADbyTag

FUNCTION

This function is used to extract a copy of the first advertising data (AD) element that has the tag byte

specified from a string which is assumed to contain the data portion of an advert report, incoming or

outgoing. If multiple instances of that AD tag type are suspected, then use the function BleGetADbyIndex to

extract.

Note: If the last AD element is malformed then it will be treated as not existing. For example, it will be

malformed if the length byte for that AD element suggests that more data bytes are required

than actually exist in the report string.

BLEGETADBYTAG (rptData$, nADtag, ADval$)

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

59 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

rptData$

byREF rptData$ AS STRING.

This parameter is a string that contains concatenated AD elements which will have been

either constructed for an outgoing advert or will have been received in a scan (depends on
module variant)

nADTag

byVAL nADTag AS INTEGER
This parameter specifies the single byte tag value for the AD element that is to returned in

the ADval$ parameter. Only the first instance can be catered for. If multiple instances are
suspected then use BleAdvADbyIndex() to extract it.

ADval$
byREF ADval$ AS STRING
When the nth index is found, the data excluding single byte the tag value for that AT
element is returned in this parameter.

Interactive
Command

No

 //Example :: BleAdvGetADbyIndex.sb (See in BL600CodeSnippets.zip)

 DIM rc, ad1$, ad2$, fullAD$, nADTag, ADval$

 '//AD with length = 6 bytes, tag = 0xDD

 ad1$= " \ 06\ DD\ 11\ 22\ 33\ 44\ 55"

 '//AD with length = 7 bytes, tag = 0xDA

 ad2$= " \ 07\ EE\ AA\ BB\ CC\ DD\ EE\ FF"

 fullAD$ = ad1$ + ad2$

 PRINT " \ n\ n" ; Strhexize$ (fullAD$) ; " \ n"

 nADTag = 0xDD

 rc= BleGetADbyTag (fullAD$, nADTag, ADval$)

 IF rc==0 THEN

 PRINT " \ nAD element with tag 0x" ; INTEGER.H'nADTag ;" is ";StrHexize$(ADval$)

 ELSE

 PRINT " \ nError reading AD: " ;INTEGER.H 'rc

 ENDIF

 nADTag = 0xEE

 rc= BleGetADbyTag (fullAD$, nADTag, ADval$)

 IF rc==0 THEN

 PRINT " \ nAD element with tag 0x" ; INTEGER.H'nADTag ;" is ";StrHexize$(ADval$)

 ELSE

 PRINT " \ nError reading AD: " ; INTEGER.H'rc

 ENDIF

 nADTAG = 0xFF

 '//Will fail because no AD exists in 'fullAD$' with the tag 'FF'

 rc= BleGetADbyTag (fullAD$, nADTag, ADval$)

 IF rc==0 THEN

 PRINT " \ nAD element with tag 0x" ; INTEGER.H'nADTag ;" is ";StrHexize$(ADval$)

 ELSE

 PRINT " \ nError reading AD: " ; INTEGER.H'rc

 ENDIF

Expected Output:

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

60 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

06DD112233445507EEAABBCCDDEEFF

AD element with tag 0x000000DD is 1122334455

AD element with tag 0x000000EE is AABBCCDDEEFF

Error reading AD: 00006060

BLEGETADBYTAG is an extension function.

BleAdvRptsCommit

FUNCTION

This function is used to commit one or both advert reports. If the string is empty then that report type is not

updated. If both strings are empty, this call will have no effect.

The advertisements will not happen until they are started using BleAdvertStart() function.

BLEADVRPTSCOMMIT(advRpt, scanRpt)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

advRpt
byRef advRpt AS STRING.
The most recent advert report.

scanRpt
byRef scanRpt AS STRING.

The most recent scan report.

Note: If any one of the two strings is not valid then the call will be aborted without updating the

other report even if this other report is valid.

Interactive
Command

No

 //Example :: BleAdvRptsCommit.sb (See in BL600CodeSnippets.zip)

 DIM advRpt$: advRpt$= ""

 DIM scRpt$: scRpt$= ""

 DIM discovMode : discovMode = 0

 DIM advApprnce : advApprnce = 1

 DIM maxDevName : maxDevName = 10

 PRINT BleAdvRptInit (advRpt$, discovMode, advApprnce, maxDevName)

 PRINT BleAdvRptAddUuid16 (advRpt$, 0x180F,0x180A, - 1, - 1, - 1, - 1)

 PRINT BleAdvRptsCommit (advRpt$, scRpt$)

 // Only the advert report will be updated.

Expected Output:

BLEADVRPTSCOMMIT is an extension function.

Connection Functions

This section describes all the connection manager related routines.

000

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

61 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

The Bluetooth specification stipulates that a peripheral cannot initiate a connection, but can perform

disconnections. Only Central Role devices are allowed to connect when an appropriate advertising packet is

received from a peripheral.

Events and Messages

See also Events and Messages for BLE-related messages that are thrown to the application when there is a

connection or disconnection. The relevant message IDs are (0), (1), (14), (15), (16), (17), (18) and (20):

MsgId Description

0 There is a connection and the context parameter contains the connection handle.

1 There is a disconnection and the context parameter contains the connection handle.

14 New connection parameters for connection associated with connection handle.

15 Request for new connection parameters failed for connection handle supplied.

16 The connection is to a bonded master

17 The bonding has been updated with a new long term key

18 The connection is encrypted

20 The connection is no longer encrypted

BleDisconnect

FUNCTION

This function causes an existing connection identified by a handle to be disconnected from the peer.

When the disconnection is complete a EVBLEMSG message with msgId = 1 and context containing the

handle will be thrown to the smart BASIC runtime engine.

BLEDISCONNECT (nConnHandle)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

nConnHandle
byVal nConnHandle AS INTEGER.

Specifies the handle of the connection that must be disconnected.

Interactive
Command

No

 //Example :: BleDisconnect.sb (See in BL600CodeSnippets.zip)

 DIM addr$: addr$= ""

 DIM rc

 FUNCTION HndlrBleMsg (BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER)

 SELECT nMsgId

 CASE 0

 PRINT " \ nNew Connection " ;nCtx

 rc = BleAuthenticate (nCtx)

 PRINT BleDisconnect (nCtx)

 CASE 1

 PRINT " \ nDisconnected " ;nCtx; " \ n"

 EXITFUNC 0

 ENDSELECT

 ENDFUNC 1

 ONEVENT EVBLEMSG CALL HndlrBleMsg

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

62 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 IF BleAdvertStart (0,addr$,100,30000,0) ==0 THEN

 PRINT " \ nAdverts Started \ n"

 ELSE

 PRINT " \ n\ nAdvertisement not successful"

 ENDIF

 WAITEVENT

Expected Output:

BLEDISCONNECT is an extension function.

BleSetCurConnParms

FUNCTION

This function triggers an existing connection identified by a handle to have new connection parameters. For

example: interval, slave latency, and link supervision timeout.

When the request is complete, a EVBLEMSG message with msgId = 14 and context containing the handle is

thrown to the smart BASIC runtime engine if it was successful. If the request to change the connection

parameters fails, an EVBLEMSG message with msgid = 15 is thrown to the smart BASIC runtime engine.

BLESETCURCONNPARMS (nConnHandle, nMinIntUs, nMaxIntUs, nSuprToutUs, nSlaveLatency)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

nConnHandle
byVal nConnHandle AS INTEGER.

Specifies the handle of the connection that must have the connection parameters
changed.

nMinIntUs
byVal nMinIntUs AS INTEGER.

The minimum acceptable connection interval in microseconds.

nMaxIntUs
byVal nMaxIntUs AS INTEGER.

The maximum acceptable connection interval in microseconds.

nSuprToutUs
byVal nSuprToutUs AS INTEGER.

The link supervision timeout for the connection in microseconds. It should be greater
than the slave latency times the actual granted connection interval.

nSlaveLatency
byVal nSlaveLatency AS INTEGER.

The number of connection interval polls that the peripheral may ignore. This times the

connection interval shall not be greater than the link supervision timeout.

Note: Slave latency is a mechanism that reduces power usage in a peripheral device and maintains short

latency. Generally a slave reduces power usage by setting the largest connection interval possible.

This means the latency is equivalent to that connection interval. To mitigate this, the peripheral can

greatly reduce the connection interval and then have a non-zero slave latency.

For example, a keyboard could set the connection interval to 1000 msec and slave latency to 0. In

this case, key presses are reported to the central device once per second, a poor user experience.

Adverts Started

New Connection 35800

Disconnected 3580

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

63 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Instead, the connection interval can be set to e.g. 50 msec and slave latency to 19. If there are no

key presses, the power use is the same as before because ((19+1) * 50) equals 1000. When a key is

pressed, the peripheral knows that the central device will poll within 50 msec, so it can send that

keypress with a latency of 50 msec. A connection interval of 50 and slave latency of 19 means the

slave is allowed to NOT acknowledge a poll for up to 19 poll messages from the central device.

Interactive
Command

No

 //Example :: BleSetCurConnParms.sb (See in BL600CodeSnippets.zip)

 DIM rc

 DIM addr$: addr$= ""

 FUNCTION HandlerBleMsg (BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER) AS INTEGER

 DIM intrvl,sprvTo,sLat

 SELECT nMsgId

 CASE 0 //BLE_EVBLEMSGID_CONNECT

 PRINT " \ n --- New Connection : " , "" ,nCtx

 rc= BleGetCurconnParms (nCtx,intrvl,sprvto,slat)

 IF rc==0 THEN

 PRINT " \ nConn Interval" , "" , "" ,intrvl

 PRINT " \ nConn Supervision Timeout" ,sprvto

 PRINT " \ nConn Slave Latency" , "" ,slat

 PRINT " \ n\ nRequest new parameters"

 //request connection interval in range 50ms to 75ms and link

 //supervision timeout of 4seconds with a slave latency of 19

 rc = BleSetCurconnParms (nCtx, 50000,75000,4000000,19)

 ENDIF

 CASE 1 //BLE_EVBLEMSGID_DISCONNECT

 PRINT " \ n --- Disconnected : " ,nCtx

 EXITFUNC 0

 CASE 14 //BLE_EVBLEMSGID_CONN_PARMS_UPDATE

 rc= BleGetCurconnParms (nCtx,intrvl,sprvto,slat)

 IF rc==0 THEN

 PRINT " \ n\ nConn Interval" ,intrvl

 PRINT " \ nConn Supervision Timeout" ,sprvto

 PRINT " \ nConn Slave Latency" ,slat

 ENDIF

 CASE 15 //BLE_EVBLEMSGID_CONN_PARMS_UPDATE_FAIL

 PRINT " \ n ??? Conn Parm Negotiation FAILED"

 CASE ELSE

 PRINT " \ nBle Msg" ,nMsgId

 ENDSELECT

 ENDFUNC 1

 ONEVENT EVBLEMSG CALL HandlerBleMsg

 IF BleAdvertStart (0,addr$,25,60000,0) ==0 THEN

 PRINT " \ nAdverts Started \ n"

 PRINT " \ nMake a connection to the BL600"

 ELSE

 PRINT " \ n\ nAdvertisement not successful"

 ENDIF

 WAITEVENT

Expected Output (Unsuccessful Negotiation):

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

64 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output (Successful Negotiation):

Note: First set of parameters will differ depending on your central device.

BLESETCURCONNPARMS is an extension function.

Adverts Started

Make a connection to the BL600

 --- New Connection : 1352

Conn Interval 7500

Conn Supervision Timeout 7000000

Conn Slave Latency 0

Request new parameters

 ??? Conn Parm Negotiation FAILED

 --- Disconnected : 1352

Adverts Started

Make a connection to the BL600

 --- New Connection : 134

Conn Interval 30000

Conn Supervision Timeout 720000

Conn Slave Latency 0

Request new parameters

New c onn Interval 75000

New c onn Supervision Timeout 4000000

New c onn Slave Latency 19

--- Disconnected : 134

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

65 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BleGetCurConnParms

FUNCTION

This function gets the current connection parameters for the connection identified by the connection handle.

Given there are three connection parameters, the function takes three variables by reference so that the

function can return the values in those variables.

BLEGETCURCONNPARMS (nConnHandle, nIntervalUs, nSuprToutUs, nSlaveLatency)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

nConnHandle
byVal nConnHandle AS INTEGER.

Specifies the handle of the connection that needs to have the connection parameters
changed

nIntervalUs
byRef nIntervalUs AS INTEGER.

The current connection interval in microseconds

nSuprToutUs
byRef nSuprToutUs AS INTEGER.

The current link supervision timeout in microseconds for the connection.

nSlaveLatency

byRef nSlaveLatency AS INTEGER.

This is the current number of connection interval polls that the peripheral may ignore.

This value multiplied by the connection interval will not be greater than the link
supervision timeout.

 Note: See Note on Slave Latency.

Interactive
Command

No

See previous example

BLEGETCURCONNPARMS is an extension function.

Security Manager Functions

This section describes routines which manage all aspects of BLE security such as saving, retrieving, and

deleting link keys and creation of those keys using pairing and bonding procedures.

Events & Messages

The following security manager messages are thrown to the run-time engine using the EVBLEMSG message

with msgIDs as follows:

MsgId Description

9 Pairing in progress and display Passkey supplied in msgCtx.

10 A new bond has been successfully created

11

Pairing in progress and authentication key requested. Type of key is in msgCtx.
msgCtx is 1 for passkey_type which will be a number in the range 0 to 999999 and 2 for OOB key
which is a 16 byte key.

To submit a passkey, use the function BLESECMNGRPASSKEY.

BleSecMngrPasskey

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

66 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

FUNCTION

This function submits a passkey to the underlying stack during a pairing procedure when prompted by the

EVBLEMSG with msgId set to 11. See Events & Messages.

BLESECMNGRPASSKEY(connHandle, nPassKey)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

connHandle
byVal connHandle AS INTEGER.

This is the connection handle as received via the EVBLEMSG event with msgId set to 0.

nPassKey
byVal nPassKey AS INTEGER.

This is the passkey to submit to the stack. Submit a value outside the range 0 to 999999
to reject the pairing.

Interactive
Command

No

//Example :: BleSecMngrPasskey.sb (See in BL600CodeSnippets.zip)

 DIM rc, connHandle

 DIM addr$: addr$= ""

 FUNCTION HandlerBleMsg (BYVAL nMsgId AS INTEGER, BYVAL nCtx AS INTEGER) AS INTEGER

 SELECT nMsgId

 CASE 0

 connHandle = nCtx

 PRINT " \ n--- Ble Connection, " ,nCtx

 CASE 1

 PRINT " \ n--- Disconnected " ;nCtx; " \ n"

 EXITFUNC 0

 CASE 11

 PRINT " \ n +++ Auth Key Request, type=" ;nCtx

 rc= BleSecMngrPassKey (connHandle,123456)

 IF rc==0 THEN //key is 123456

 PRINT " \ nPasskey 123456 was used"

 ELSE

 PRINT " \ nResult Code 0x" ;integer.h 'rc

 ENDIF

 CASE ELSE

 ENDSELECT

 ENDFUNC 1

 ONEVENT EVBLEMSG CALL HandlerBleMsg

 rc= BleSecMngrIoCap (4) //Set i/o capability - Keyboard Only (authenticated pairing)

 IF BleAdvertStart (0,addr$,25,0,0) ==0 THEN

 PRINT " \ nAdverts Started \ n"

 PRINT " \ nMake a connection to the BL600"

 ELSE

 PRINT " \ n\ nAdvertisement not successful"

 ENDIF

 WAITEVENT

Expected Output:

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

67 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BLESECMNGRPASSKEY is an extension function.

BleSecMngrKeySizes

FUNCTION

This function sets minimum and maximum long term encryption key size requirements for subsequent

pairings.

If this function is not called, default values are 7 and 16 respectively. To ship your end product to a country

with an export restriction, reduce nMaxKeySize to an appropriate value and ensure it is not modifiable.

BLESECMNGRKEYSIZES(nMinKeysize, nMaxKeysize)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

nMinKeysiz
byVal nMinKeysiz AS INTEGER.
The minimum key size. The range of this value is from 7 to 16.

nMaxKeysize
byVal nMaxKeysize AS INTEGER.

The maximum key size. The range of this value is from nMinKeysize to 16.

Interactive
Command

No

 //Example :: BleSecMngrKeySizes.sb (See in BL600CodeSnippets.zip)

 PRINT BleSecMngrKeySizes (8,15)

Expected Output:

BLESECMNGRKEYSIZES is an extension function.

BleSecMngrIoCap

FUNCTION

This function sets the user I/O capability for subsequent pairings and is used to determine if the pairing is

authenticated or not. This is related to Simple Secure Pairing as described in the following whitepapers:

https://www.bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=86174

https://www.bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=86173

In addition, the Security Manager Specification in the core 4.0 specification Part H provides a full description.

You must be registered with the Bluetooth SIG (www.bluetooth.org) to get access to all these documents.

An authenticated pairing is deemed to be one with less than 1 in a million probability that the pairing was

compromised by a MITM (Man in the middle) security attack.

Adverts Started

Make a connection to the BL600

--- Ble Connection, 1655

 +++ Auth Key Request, type=1

Passkey 123456 was used

--- Disconnected 1655

0

http://ews-support.lairdtech.com/
https://www.bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=86174
https://www.bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=86173
http://www.bluetooth.org/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

68 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

The valid user I/O capabilities are as described below.

BLESECMNGRIOCAP (nIoCap)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

nloCap

byVal nIoCap AS INTEGER.

The user I/O capability for all subsequent pairings.

0 JkjaĂ]hokĂgjksjĂ]oĂ¦FqopĂSkngo§ (unauthenticated pairing)

1 Display with Yes/No input capability (authenticated pairing)

2 Keyboard Only (authenticated pairing)

3 Display Only (authenticated pairing « if other end has input cap)
4 Keyboard only (authenticated pairing)

Interactive
Command

No

 //Example :: BleSecMngrIoCap.sb (See in BL600CodeSnippets.zip)

 PRINT BleSecMngrIoCap (1)

Expected Output:

BLESECMNGRIOCAP is an extension function.

BleSecMngrBondReq

FUNCTION

This function is used to enable or disable bonding when pairing.

Note: This function will be deprecated in future releases. It is recommended to invoke this function,

with the parameter set to 0, before calling BleAuthenticate().

BLESECMNGRBONDREQ (nBondReq)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

nBondReq
byVal nBondReq AS INTEGER.

0 Disable
1 Enable

Interactive
Command

No

 //Example :: BleSecMngrBondReq.sb (See in BL600CodeSnippets.zip)

 IF BleSecMngrBondReq (0) ==0 THEN

 PRINT " \ nBonding disabled"

 ENDIF

0

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

69 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output:

BLESECMNGRBONDREQ is an extension function.

BleAuthenticate

FUNCTION

This routine is used to induce the device to authenticate the peer. This will be deprecated in future firmware.

BLEAUTHENTICATE (nConnCtx)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

nConnCtx
byVal nConnCtx AS INTEGER.

This is the context value provided in the EVBLEMSG(0) message which informed the
stack that a connection had been established.

Interactive
Command

No

See example for BleDisconnect:

?d]jcaĂĂĂ¨rc = BleAuthenticate (nCtx)© to P̈RINT BleAuthenticate (nCtx)©

BLEAUTHENTICATE is an extension function.

GATT Server Functions

This section describes all functions related to creating and managing services that collectively define a GATT

table from a GATT server role perspective. These functions allow the developer to create any Service that has

been described and adopted by the Bluetooth SIG or any custom Service that implements some custom

unique functionality, within resource constraints such as the limited RAM and FLASH memory that is exist in

the module.

A GATT table is a collection of adopted or custom Services which in turn are a collection of adopted or

custom Characteristics. Although keep in mind that by definition an adopted service cannot contain custom

characteristics but the reverse is possible where a custom service can include both adopted and custom

characteristics.

Descriptions of Services and Characteristics are available in the Bluetooth Specification v4.0 or newer and like

most specifications are concise and difficult to understand. What follows is an attempt to familiarise the

reader with those concepts using the perspective of the smartBASIC programming environment.

To help understand the terms Service and Characteristic better, think of a Characteristic as a container (or a

pot) of data where the pot comes with space to store the data and a set of properties that are officially called

¦@ao_nelpkno§ĂejĂpdaĂ>PĂola_*ĂEjĂpdaĂ¦lkp§Ă]j]hkcu(ĂpdejgĂkbĂ@ao_nelpknĂ]oĂ_khkqnĂkbĂpdaĂlkp(ĂsdapdanĂepĂd]oĂ]Ăhe`(Ă

whether the lid has a lock or whether it has a handle or a spout etc. For a full list of these Descriptors online

see http://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorsHomePage.aspx . These descriptors are

assigned 16 bit UUIDs (value 0x29xx) and are referenced in some of the smartBASIC API functions if you

decide to add those to your characteristic definition.

To wrap up the loose analogy, think of Service as just a carrier bag to hold a group of related Characterisics

pkcapdanĂsdanaĂpdaĂlnejpejcĂkjĂpdaĂ_]nneanĂ^]cĂeoĂ]ĂQQE@*ĂUkqĂsehhĂbej`Ăpd]pĂbnkiĂ]Ăoi]np>=OE?Ă`arahklan§oĂ

Bonding disabled

http://ews-support.lairdtech.com/
http://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorsHomePage.aspx

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

70 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

perspective, a set of characteristics is what you will need to manage and the concept of Service is only

required at GATT table creation time.

A GATT table can have many Services each containing one or more Characteristics. The differentiation

between Services and Characteristics is expedited using an identification number called a UUID (Universally

Unique Identifier) which is a 128 bit (16 byte) number. Adopted Services or Characteristics have a 16 bit (2

byte) shorthand identifier (which is just an offset plus a base 128 bit UUID defined and reserved by the

Bluetooth SIG) and custom Service or Characteristics shall have the full 128 bit UUID. The logic behind this is

that when you come across a 16 bit UUID, it implies that a specification will have been published by the

Bluetooth SIG whereas using a 128 bit UUID does NOT require any central authority to maintain a register of

those UUIDs or specifications describing them.

The lack of requirement for a central register is important to understand, in the sense that if a custom service

or characteristic needs to be created, the developer can use any publicly available UUID (sometimes also

known as GUID) generation utility.

These utilities use entropy from the real world to generate a 128 bit random number that has an extremely

low probability to be the same as that generated by someone else at the same time or in the past or future.

As an example, at the time of writing this document, the following website

http://www.guidgenerator.com/online-guid-generator.aspx offers an immediate UUID generation service,

although it uses the term GUID. From the GUID Generator website:

How unique is a GUID?

128-bits is big enough and the generation algorithm is unique enough that if 1,000,000,000
GUIDs per second were generated for 1 year the probability of a duplicate would be only
50%. Or if every human on Earth generated 600,000,000 GUIDs there would only be a 50%
probability of a duplicate.

This extremely low probability of generating the same UUID is why there is no need for a central register

maintained by the Bluetooth SIG for custom UUIDs.

Please note that Laird does not warrant or guarantee that the UUID generated by this website or any other

utility is unique. It is left to the judgement of the developer whether to use it or not.

Note: If the developer does intend to create custom Services and/or Characteristics then it is

recommended that a single UUID is generated and be used from then on as a 128 bit (16 byte)

company/developer unique base along with a 16 bit (2 byte) offset, in the same manner as the

Bluetooth SIG.

 This will then allow up to 65536 custom services and characteristics to be created, with the

added advantage that it will be easier to maintain a list of 16 bit integers.

 The main reason for avoiding more than one long UUID is to keep RAM usage down given that

16 bytes of RAM is used to store a long UUID. Smart BASIC functions have been provided to

manage these custom 2 byte UUIDs along with their 16 byte base UUIDs.

In this document when a Service or Characteristic is described as adopted, it implies that the Bluetooth SIG

has published a specification which defines that Service or Characteristic and there is a requirement that any

device claiming to support them SHALL have approval to prove that the functionality has been tested and

verified to behave as per that specification.

Currently there is no requirement for custom Service and/or Characteristics to have any approval. By

definition, interoperability is restricted to just the provider and implementer.

A Service is an abstraction of some collectivised functionality which, if broken down further into smaller

components, would cease to provide the intended behaviour. A couple of examples in the BLE domain that

http://ews-support.lairdtech.com/
http://www.guidgenerator.com/online-guid-generator.aspx

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

71 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

have been adopted by the Bluetooth SIG are Blood Pressure Service and Heart Rate Service. Each have sub-

components that map to Characteristics.

Blood Pressure is defined by a collection of data entities like for example Systolic Pressure, Diastolic Pressure,

Pulse Rate and many more. Likewise a Heart Rate service also has a collection which includes entities such as

the Pulse Rate and Body Sensor Location.

A list of all the adopted Services is at:http://developer.bluetooth.org/gatt/services/Pages/ServicesHome.aspx.

Laird recommends that if you decide to create a custom Service then it is defined and described in a similar

fashion, so that your goal should be to get the Bluetooth SIG to adopt it for everyone to use in an

interoperable manner.

These Services are also assigned 16 bit UUIDs (value 0x18xx) and are referenced in some of the smart BASIC

API functions described in this section.

Services, as described above, are a collection of one or more Characteristics. A list of all adopted

characteristics is found at http://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicsHome.aspx.

You should note that these descriptors are also assigned 16 bit UUIDs (value 0x2Axx) and are referenced in

some of the API functions described in this section. Custom Characteristics will have 128 bit (16 byte) UUIDs

and API functions are provided to handle those too.

Note: If you intend to create a custom Service or Characteristic, and adopt the recommendation, stated

above, of a single long 16 byte base UUID, so that the service can be identified using a 2 byte

UUID, then allocate a 16 bit value which is not going to coincide with any adopted values to

minimise confusion. Selecting a similar value is possible and legal given that the base UUID is

different. The recommendation is just for ease of maintenance.

Finally, having prepared a background to Services and Characteristics, the rest of this introduction will focus

on the specifics of how to create and manage a GATT table from a perspective of the smart BASIC API

functions in the module.

Recall that a Service has been described as a carrier bag that groups related characteristics together and a

Characteristic is just a data container (pot). Therefore, a remote GATT Client, looking at the Server, which is

presented in your GATT table, sees multiple carrier bags each containing one or more pots of data.

The GATT Client (remote end of the wireless connection) needs to see those carrier bags to determine the

groupings and once it has identified the pots it will only need to keep a list of references to the pots it is

ejpanaopa`Ăej*ĂKj_aĂpd]pĂheopĂeoĂi]`aĂ]pĂpdaĂ_heajpĂaj`(ĂepĂ_]jĂ¦pdnksĂ]s]uĂpdaĂ_]nneanĂ^]c§*

http://ews-support.lairdtech.com/
http://developer.bluetooth.org/gatt/services/Pages/ServicesHome.aspx
http://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicsHome.aspx

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

72 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 Yes

 Yes
Broadcastable

Create a metadata object which
defines the permissions for the

characteristic value attribute

Notifiable OR
Indicatable

BleHandleUuid()

BleSvcCommit()

BleAttrMetadata()

BleAttrMetadata()

Create a metadata object which
defines the permissions for the
characteristic CCCD attribute

BleAttrMetadata()

Create a metadata object which
defines the permissions for the
characteristic SCCD attribute

Start the definition of a new characteristic
which will be later commited to the GATT

table in a single transaction
BleCharNew()

 Yes User Desc
Descriptor?

BleAttrMetadata()

Create a metadata object which
defines the permissions for the

User Desc Descriptor

Add parameters for creation of
User Desc Descriptor

BleCharDescUserDesc()

BleHandleUuid()

Create a UUID Handle for Service (16/128)

Create a UUID Handle for Characterisitic (16/128)

 Yes

BleAttrMetadata()

Add other
Descriptor?

Add parameters for creation of
other Descriptor

Create a metadata object which
defines the permissions for the

other Descriptor

BleCharDescAdd()

Commit the Characteristic to the
Gatt ServerTable in single transaction

BleCharCommit()

Commit a PRIMARY or SECONDARY
service which returns a service handle

 Yes

More
Services?

 Yes

More
Characteristics?

Save the handle

that is returned

as it is used to

interact with the

characteristic

 Yes Pres'tion Format
Descriptor?

Add parameters for creation of
Presentation Format Descriptor
BleCharDescPrstnFrmt()

Similarly in the module, once the GATT

table is created and after each Service is

fully populated with one or more

Characteristics there is no need to keep

pd]pĂ¦_]nneanĂ^]c§*ĂDksaran(Ă]oĂa]_dĂ

?d]n]_panope_ĂeoĂ¦lh]_a`ĂejĂpdaĂ_]nneanĂ^]c§Ă

using the appropriate smartBASIC API

bqj_pekj(Ă]Ă¦na_aelp§ĂsehhĂ^aĂnapqnja`Ă]j`ĂeoĂ

referred to as a char_handle. The

developer will then need to keep those

handles to be able to read and write and

generally interact with that particular

characteristic. The handle does not care

whether the Characteristic is adopted or

custom because from then on the

firmware managing it behind the scenes in

smartBASIC does not care.

Therefore from the smartBASIC app

`arahklan§oĂlogical perspective a GATT

table looks nothing like the table that is

presented in most BLE literature. Instead

the GATT table is purely and simply just a

collection of char_handles that reference

the characteristics (data containers) which

have been registered with the underlying

GATT table in the BLE stack.

A particular char_handle is in turn used to

make something happen to the referenced

characteristic (data container) using a

smart BASIC function and conversely if

data is written into that characteristic (data

container), by a remote GATT Client, then

an event is thrown, in the form of a

message, into the smart BASIC runtime

engine which will get processed if and

only if a handler function has been

registered by the apps developer using the

ONEVENT statement.

With this simple model in mind, an

overview of how the smart BASIC

functions are used to register Services and

Characteristics is illustrated in the

flowchart on the right and sample code

follows.

 //Example :: ServicesAndCharacteristics.sb (See in BL600CodeSnippets.zip)

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

73 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 //==

 //Register two Services in the GATT Table. Service 1 with 2 Characteristics and

 //Service 2 with 1 characteristic. This implies a total of 3 characteristics to

 //manage.

 //The characteristic 2 in Service 1 will not be readable or writable but only

 //indicatable

 //The characteristic 1 in Service 2 will not be readable or writable but only

 //notif yable

 //==

 DIM rc //result code

 DIM hSvc //service handle

 DIM mdAttr

 DIM mdCccd

 DIM mdSccd

 DIM chProp

 DIM attr$

 DIM hChar11 // handles for characteristic 1 of Service 1

 DIM hChar21 // handles for characteristic 2 of Service 1

 DIM hChar12 // handles for characteristic 1 of Service 2

 DIM hUuidS1 // handles for uuid of Service 1

 DIM hUuidS2 // handles for uuid of Service 2

 DIM hUuidC11 // handles for uuid of characteristic 1 in Service 1

 DIM hUuidC12 // handles for uuid of characteristic 2 in Service 1

 DIM hUuidC21 // handles for uuid of characteristic 1 in Service 2

 // --- Register Service 1

 hUuidS1 = BleHandleUuid16 (0x180D)

 rc = BleServiceNew (BLE_SERVICE_PRIMARY, hUuidS1, hSvc)

 // --- Register Characteristic 1 in Service 1

 mdAttr = BleAttrMetadata (BLE_ATTR_ACCESS_OPEN,BLE_ATTR_ACCESS_OPEN,10,0,rc)

 mdCccd = BLE_CHAR_METADATA_ATTR_NOT_PRESENT

 mdSccd = BLE_CHAR_METADATA_ATTR_NOT_PRESENT

 chProp = BLE_CHAR_PROPERTIES_READ + BLE_CHAR_PROPERTIES_WRITE

 hUuidC11 = BleHandleUuid16 (0x2A37)

 rc = BleCharNew (chProp, hUuidC11,mdAttr,mdCccd,mdSccd)

 rc = BleCharCommit (shHrs,hrs$,hChar11)

 // --- Register Characteristic 2 in Service 1

 mdAttr = BleAttrMetadata (BLE_ATTR_ACCESS_OPEN,BLE_ATTR_ACCESS_OPEN,10,0,rc)

 mdCccd = BleAttrMetadata (BLE_ATTR_ACCESS_OPEN,BLE_ATTR_ACCESS_OPEN,2,0,rc)

 mdSccd = BLE_CHAR_METADATA_ATTR_NOT_PRESENT

 chProp = BLE_CHAR_PROPERTIES_INDICATE

 hUuidC12 = BleHandleUuid16 (0x2A39)

 rc = BleCharNew (chProp, hUuidC12,mdAttr,mdCccd,mdSccd)

 attr$= " \ 00\ 00"

 rc = BleCharCommit (hSvc,attr$,hChar21)

 rc = BleServiceCommit (hSvc)

 // --- Register Service 2 (can now reuse the service handle)

 hUuidS2 = BleHandleUuid16 (0x1856)

 rc = BleServiceNew (BLE_SERVICE_PRIMARY, hUuidS2 , hSvc)

 // --- Register Characteristic 1 in Service 2

 mdAttr = BleAttrMetadata (BLE_ATTR_ACCESS_NONE,BLE_ATTR_ACCESS_NONE,10,0,rc)

 mdCccd = BleAttrMetadata (BLE_ATTR_ACCESS_OPEN,BLE_ATTR_ACCESS_OPEN,2,0,rc)

 mdSccd = BLE_CHAR_METADATA_ATTR_NOT_PRESENT

 chProp = BLE_CHAR_PROPERTIES_NOTIFY

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

74 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 hUuidC21 = BleHandleUuid16 (0x2A54)

 rc = BleCharNew (chProp, hUuidC21,mdAttr,mdCccd,mdSccd)

 attr$= " \ 00\ 00\ 00\ 00"

 rc = BleCharCommit (hSvc,attr$,hChar12)

 rc = BleServiceCommit (hSvc)
 //===The 2 services are now visible in the gatt table

Writes into a characteristic from a remote client is detected and processed as follow:

 // --

 // To deal with writes from a gatt client into characteristic 1 of Service 1

 // which has the handle hChar11

 // --- -----------------

 // This handler is called when there is a EVCHARVAL message

 FUNCTION HandlerCharVal (BYVAL hChar AS INTEGER) AS INTEGER

 DIM attr$

 IF hChar == hChar11 THEN

 rc = BleCharValueRead (hChar11,attr$)

 print "Svc1/Char1 has been writen with = " ;attr$

 ENDIF

 ENDFUNC 1

 //enable characteristic value write handler

 OnEvent EVCHARVAL call HandlerCharVal

 WAITEVENT

Assuming there is a connection and notify has been enabled then a value notification is expedited as follows:

 // --

 // Notify a value for characteristic 1 in service 2

 // --- -------------------------------

 attr$= "somevalue"

 rc = BleCharValueNotif y(hChar12,attr$)

Assuming there is a connection and indicate has been enabled then a value indication is expedited as follows:

 // --

 // indicate a value for characteristic 2 in service 1

 // --

 // This handler is called when there is a EVCHARHVC message

 FUNCTION HandlerCharHvc (BYVAL hChar AS INTEGER) AS INTEGER

 IF hChar == hChar12 THEN

 PRINT "Svc1/Char2 indicate has been confirmed"

 ENDIF

 ENDFUNC 1

 //enable characteristic value indication confirm handler

 OnEvent EVCHARHVC CALL HandlerCharHvc

 attr$= "somevalue"

 rc = BleCharValueIndicate (hChar12,attr$)

The rest of this section details all the smart BASIC functions that help create that framework.

Events and Messages

See also Events and Messages for the messages that are thrown to the application which are related to the

generic characteristics API. The relevant messages are those that start with EVCHARxxx.

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

75 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BleGapSvcInit

FUNCTION

This function updates the GAP service, which is mandatory for all approved devices to expose, with the

information provided. If it is not called before adverts are started, default values are exposed. Given this is a

mandatory service, unlike other services which need to be registered, this one must only be initialised as the

underlying BLE stack unconditionally registers it when starting up.

The GAP service contains five characteristics as listed at the following site:

http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.generic_access

.xml

BLEGAPSVCINIT (deviceName, nameWritable, nAppearance, nMinConnInterval, nMaxConnInterval,

nSupervisionTout, nSlaveLatency)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

deviceName
byRef deviceName AS STRING

PdaĂj]iaĂkbĂpdaĂ`are_aĂ$a*c*ĂH]en`[Pdanikiapan%ĂpkĂopknaĂejĂpdaĂ¦@are_aĂJ]ia§Ă
characteristic of the GAP service.

Note: When an advert report is created using BLEADVRPTINIT() this field is read from the service and an

attempt is made to append it in the Device Name AD. If the name is too long, that function fails to

initialise the advert report and a default name is transmitted. It is recommended that the device

name submitted in this call be as short as possible.

nameWritable
byVal nameWritable AS INTEGER

If non-zero, the peer device is allowed to write the device name. Some profiles allow
this to be made optional.

nAppearance

byVal nAppearance AS INTEGER

Field lists the external appearance of the device and updates the Appearance

characteristic of the GAP service. Possible values:

 org.bluetooth.characteristic.gap.appearance.

nMinConnInterval

byVal nMinConnInterval AS INTEGER

The prebanna`ĂiejeiqiĂ_kjja_pekjĂejpanr]h(Ăql`]paoĂpdaĂ¦Laneldan]hĂLnabanna`Ă

?kjja_pekjĂL]n]iapano§Ă_d]n]_paneope_ĂkbĂpdaĂC=LĂoanre_a*ĂN]jcaĂeoĂ^apsaajĂ31,,Ă

and 4000000 microseconds (rounded to the nearest 1250 microseconds). This must
be smaller than nMaxConnInterval.

nMaxConnInterval

byVal nMaxConnInterval AS INTEGER

PdaĂlnabanna`Ăi]teiqiĂ_kjja_pekjĂejpanr]h(Ăql`]paoĂpdaĂ¦Laneldan]hĂLnabanna`Ă

?kjja_pekjĂL]n]iapano§Ă_d]n]_paneope_ĂkbĂpdaĂC=LĂoanre_a*ĂN]jcaĂeoĂ^apsaajĂ31,,Ă

and 4000000 microseconds (rounded to the nearest 1250 microseconds). This must
be larger than nMinConnInterval.

nSupervisionTimeout

byVal nSupervisionTimeout AS INTEGER

PdaĂlnabanna`ĂhejgĂoqlanreoekjĂpeiakqpĂ]j`Ăql`]paoĂpdaĂ¦Laneldan]hĂLnabanna`Ă

?kjja_pekjĂL]n]iapano§Ă_d]n]_paneope_ĂkbĂpdaĂGAP service. Range is between 100000
to 32000000 microseconds (rounded to the nearest 10000 microseconds).

nSlaveLatency

byVal nSlaveLatency AS INTEGER

The preferred slave latency is the number of communication intervals that a slave

may ignore without losing the connectiojĂ]j`Ăql`]paoĂpdaĂ¦Laneldan]hĂLnabanna`Ă

?kjja_pekjĂL]n]iapano§Ă_d]n]_paneope_ĂkbĂpdaĂC=LĂoanre_a*ĂĂPdeoĂr]hqaĂiqopĂ^aĂoi]hhanĂ

than (nSupervisionTimeout/ nMaxConnInterval) -1. i.e. nSlaveLatency <

http://ews-support.lairdtech.com/
http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.generic_access.xml
http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.generic_access.xml
https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.gap.appearance.xml

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

76 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

(nSupervisionTimeout / nMaxConnInterval) -1

Interactive
Command

No

 //Example :: BleGapSvcInit.sb (See in BL600CodeSnippets.zip)

 DIM rc,dvcNme$,nmeWrtble,apprnce,MinConnInt,MaxConnInt,ConnSupTO,sL,s$

 dvcNme$= "Laird_TS"

 nmeWrtble = 0 //Device name will not be writable by peer

 apprnce = 768 //The device will appear as a Generic Thermometer

 MinConnInt = 500000 //Minimum acceptable connection interval is 0.5 seconds

 MaxConnInt = 1000000 //Maximum acceptable connection interval is 1 second

 ConnSupTO = 4000000 //Connection supervisory timeout is 4 seconds

 sL = 0 //Slave latency -- number of conn events that can be missed

 rc= BleGapSvcInit (dvcNme$,nmeWrtble,apprnce,MinConnInt,MaxConnInt,ConnSupTO,sL)

 IF !rc THEN

 PRINT " \ nSuccess"

 ELSE

 PRINT " \ nFailed 0x" ; INTEGER.H'rc //Print result code as 4 hex digits

 ENDIF

Expected Output:

BLEGAPSVCINIT is an extension function.

Success

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

77 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BleGetDeviceName$

FUNCTION

This function reads the device name characteristic value from the local gatt table. This value is the same as

pd]pĂoqllhea`ĂejĂ>haC]lOr_Ejep$%ĂebĂpdaĂ¦j]iaSnep]^ha§Ăl]n]iapanĂs]oĂ,(ĂkpdanseoaĂepĂ_]jĂ^aĂ`ebbanajp*Ă

AR>HAIOCĂarajpĂeoĂpdnksjĂsepdĂ¦ioce`§Ă99Ă.1 when the GATT client writes a new value and is the best time

to call this function.

BLEGETDEVICENAME$ ()

Returns

STRING, the current device name in the local GATT table. It is the same as that
oqllhea`ĂejĂ>haC]lOr_Ejep$%ĂebĂpdaĂ¦j]iaSnep]^ha§Ăl]n]iapanĂwas 0, otherwise it can
^aĂ`ebbanajp*ĂAR>HAIOCĂarajpĂeoĂpdnksjĂsepdĂ¦ioce`§Ă99Ă.-ĂsdajĂpdaĂC=PPĂ_heajpĂ
writes a new value.

Arguments None

Interactive
Command

No

 //Example :: BleGetDeviceName$.sb (See in BL600CodeSnippets.zip)

 DIM rc,dvcNme$,nmeWrtble,apprnce,MinCo nnInt,MaxConnInt,ConnSupTO,sL

 PRINT " \ n --- DevName : " ; BleGetDeviceName$ ()

 // Changing device name manually

 dvcNme$= "My BL600"

 nmeWrtble = 0

 apprnce = 768

 MinConnInt = 500000

 MaxConnInt = 1000000

 ConnSupTO = 4000000

 sL = 0

 rc = BleGapSvcInit (dvcNme$,nmeWrtble,apprnce,MinConnInt,MaxConnInt,ConnSupTO,sL)

 PRINT " \ n --- New DevName : " ; BleGetDeviceName$ ()

Expected Output:

BLEGETDEVICENAME$ is an extension function.

--- DevName : LAIRD BL600

--- New DevName : My BL600

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

78 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BleSvcRegDevInfo

FUNCTION

PdeoĂbqj_pekjĂeoĂqoa`ĂpkĂnaceopanĂpdaĂ@are_aĂEjbkni]pekjĂoanre_aĂsepdĂpdaĂC=PPĂoanran*ĂPdaĂ¦@are_aĂEjbkni]pekj§Ă

service contains nine characteristics as listed at the following website:

http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.device_inform

ation.xml

PdaĂbenis]naĂnareoekjĂopnejcĂsehhĂ]hs]uoĂ^aĂoapĂpkĂ¨>H2,,6rS*T*U*V©ĂsdanaĂS(T(U(VĂ]naĂ]oĂlanĂpdaĂnareoekjĂ

information which is returned to the command AT I 4.

BLESVCREGDEVINFO (manfName$, modelNum$, serialNum$, hwRev$,

swRev$, sysId$, regDataList$, pnpId$)

FUNCTION

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

manfName$
byVal manfName$ AS STRING

The device manufacturer. Can be set empty to omit submission.

modelNum$
byVal modelNum$ AS STRING

The device model number. Can be set empty to omit submission.

serialNum$
byVal serialNum$ AS STRING

The device serial number. Can be set empty to omit submission.

hwRev$
byVal hwRev$ AS STRING

The device hardware revision string. Can be set empty to omit submission.

swRev$
byVal swRev$ AS STRING
The device software revision string. Can be set empty to omit submission.

sysId$

byVal sysId$ AS STRING

The device system ID as defined in the specifications. Can be set empty to omit submission.

Otherwise it shall be a string exactly 8 octets long, where:

 Byte 0..4 := Manufacturer Identifier

 Byte 5..7 := Organisationally Unique Identifier

For the ola_e]hĂ_]oaĂkbĂpdaĂopnejcĂ^aejcĂat]_phuĂ-Ă_d]n]_panĂhkjcĂ]j`Ă_kjp]ejejcĂ¨<©(ĂpdaĂ

system ID is created from the MAC address if (and only if) an IEEE public address is set. If

the address is the random static variety, this characteristic is omitted.

regDataList$
byVal regDataList$ AS STRING

PdaĂ`are_a§oĂnacqh]pknuĂ_anpebe_]pekjĂ`]p]ĂheopĂ]oĂ`abeja`ĂejĂpdaĂola_ebe_]pekj*ĂEpĂ_]jĂ^aĂoapĂ]oĂ
an empty string to omit submission.

pnpId$

byVal pnpId$ AS STRING

PdaĂ`are_a§oĂlhqcĂ]j`Ălh]uĂE@Ă]oĂ`abeja`ĂejĂpdaĂolacification. Can be set empty to omit

submission. Otherwise, it shall be exactly 7 octets long, where:

 Byte 0 := Vendor Id Source

 Byte 1,2 := Vendor Id (Byte 1 is LSB)

 Byte 3,4 := Product Id (Byte 3 is LSB)

 Byte 5,6 := Product Version (Byte 5 is LSB)

Interactive
Command

No

 //Example :: BleSvcRegDevInfo.sb (See in BL600CodeSnippets.zip)

http://ews-support.lairdtech.com/
http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.device_information.xml
http://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.device_information.xml

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

79 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

 DIM rc,manfNme$,mdlNum$,srlNum$,hwRev$,swRev$,sysId$,regDtaLst$,pnpId$

 manfNme$ = "Laird Technologies"

 mdlNum$ = "BL600"

 srlNum$ = "" //empty to omit submission

 hwRev$ = "1.0"

 swRev$ = "1.0"

 sysId$ = "" //empty to omit submission

 regDtaLst$ = "" //empty to omit submission

 pnpId$ = "" //empty to omit submission

 rc= BleSvcRegDevInfo (manfNme$,mdlNum$,srlNum$,hwRev$,swRev$,sysId$,regDtaLst$,pnpId$)

 IF !rc THEN

 PRINT " \ nSuccess"

 ELSE

 PRINT " \ nFailed 0x" ; INTEGER.H'rc

 ENDIF

Expected Output:

BLESVCREGDEVINFO is an extension function.

BleHandleUuid16

FUNCTION

This function takes an integer in the range 0 to 65535 and converts it into a 32 bit integer handle that

associates the integer as an offset into the Bluetooth SIG 128 bit (16byte) base UUID which is used for all

adopted services, characteristics and descriptors.

If the input value is not in the valid range then an invalid handle (0) is returned

The returned handle shall be treated by the developer as an opaque entity and no further logic shall be based

kjĂpdaĂ^epĂ_kjpajp(Ă]l]npĂbnkiĂ]hhĂ,§oĂsde_dĂnalnaoajpoĂ]jĂejr]he`ĂQQE@Ăd]j`ha*

BLEHANDLEUUID16 (nUuid16)

Returns INTEGER, a nonzero handle shorthand for the UUID. Zero is an invalid UUID handle.

Arguments

nUuid16
byVal nUuid16 AS INTEGER

nUuid16 is first bitwise ANDed with 0xFFFF and the result will be treated as an offset into the

Bluetooth SIG 128 bit base UUID.

Interactive
Command

No

 //Example :: BleHandleUuid16.sb (See in BL600CodeSnippets.zip)

 DIM uuid

 DIM hUuidHRS

 uuid = 0x180D //this is UUID for Heart Rate Service

 hUuidHRS = BleHandleUuid16 (uuid)

 IF hUuidHRS == 0 THEN

 PRINT " \ nFailed to create a handle"

 ELSE

 PRINT "Handle for HRS Uuid is " ; integer.h' hUuidHRS; "(" ;hUuidHRS; ")"

 ENDIF

Success

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

80 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

Expected Output:

BLEHANDLEUUID16 is an extension function.

BleHandleUuid128

FUNCTION

This function takes a 16 byte string and converts it into a 32 bit integer handle. The handle consists of a 16

bit (2 byte) offset into a new 128 bit base UUID.

The base UUID is basically created by taking the 16 byte input string and setting bytes 12 and 13 to zero after

extracting those bytes and storing them in the handle object. The handle also contains an index into an array

of these 16 byte base UUIDs which are managed opaquely in the underlying stack.

The returned handle shall be treated by the developer as an opaque entity and no further logic shall be based

on the bit content. However, note that a string of zeroes represents an invalid UUID handle.

Please ensure that you use a 16 byte UUID that has been generated using a random number generator with

sufficient entropy to minimise duplication, as stated in an earlier section and that the first byte of the array is

the most significant byte of the UUID.

BLEHANDLEUUID128 (stUuid$)

Returns
INTEGER, A handle representing the shorthand UUID. If zero, which is an invalid UUID
handle, there is either no spare RAM memory to save the 16 byte base or more than 253
custom base UUIDs have been registered.

Arguments

stUuid$

byRef stUuid$ AS STRING

Any 16 byte string that was generated using a UUID generation utility that has enough entropy

to ensure that it is random. The first byte of the string is the MSB of the UUID « that is, big

endian format.

Interactive
Command

No

 //Example :: BleHandleUuid128.sb (See in BL600CodeSnippets.zip)

 DIM uuid$: hUuidCustom

 //creat e a custom uuid for my ble widget

 uuid$ = "ced9d91366924a1287d56f2764762b2a"

 uuid$ = StrDehexize$ (uuid$)

 hUuidCustom = BleHandleUuid128 (uuid$)

 IF hUuidCustom == 0 THEN

 PRINT " \ nFailed to create a handle"

 ELSE

 PRINT "Handle for custom Uuid is " ; integer.hô hUuidCustom ; "(" ;hUuidCustom; ")"

 ENDIF

 // hUuidCustom now references an object which points to

 // a base uui d = ced9d91366924a1287d56f274762 2b2a (note 0's in byte position 2/3)

 // and an offset = 0xd913

Expected Output:

Handle for HRS U uid is FE01180D (- 33482739)

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

81 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BLEHANDLEUUID128 is an extension function.

BleHandleUuidSibling

FUNCTION

This function takes an integer in the range 0 to 65535 along with a UUID handle which had been previously

created using BleHandleUuid16() or BleHandleUuid128() to create a new UUID handle. This handle references

the same 128 base UUID as the one referenced by the UUID handle supplied as the input parameter.

The returned handle shall be treated by the developer as an opaque entity and no further logic shall be based

kjĂpdaĂ^epĂ_kjpajp(Ă]l]npĂbnkiĂ]hhĂ,§oĂsde_dĂnalnaoajpoĂ]jĂejr]he`ĂQQE@Ăd]j`ha*

BLEHANDLEUUIDSIBLING (nUuidHandle, nUuid16)

Returns
INTEGER, a handle representing the shorthand UUID and can be zero which is an invalid
UUID handle, if nUuidHandle is an invalid handle in the first place.

Arguments

nUuidHandle
byVal nUuidHandle AS INTEGER

A handle that was previously created using either BleHandleUui16() or BleHandleUuid128().

nUuid16
byVal nUuid16 AS INTEGER

A UUID value in the range 0 t0 65535 which will be treated as an offset into the 128 bit
base UUID referenced by nUuidHandle.

Interactive
Command

No

 //Example :: BleHandleUuid Sibling .sb (See in BL600CodeSnippets.zip)

 DIM uuid$, hUuid1 , hUuid2 // hUuid2 will have the same base uuid as hUuid1

 //create a custom uuid for my ble widget

 uuid$ = "ced9d91366924a1287d56f2764762b2a"

 uuid$ = StrDehexize$ (uuid$)

 hUuid1 = BleHandleUuid128 (uuid$)

 IF hUuid1 == 0 THEN

 PRINT " \ nFailed to create a handle"

 ELSE

 PRINT "Handle for custom Uuid is " ; integer.h' hUuid1; "(" ;hUuid1; ")"

 ENDIF

 // hUuid 1 now references an object which points to

 // a base uuid = ced9 0000 66924a1287d56f27 4762 2b2a (note 0's in byte position 2/3)

 // and an offset = 0xd913

 hUuid2 = BleHandleUuidSibling (hUuid1,0x1234)

 IF hUuid2 == 0 THEN

 PRINT " \ nFailed to create a handle"

 ELSE

 PRINT " \ nHandle for custom sibling Uuid is " ; integer.h' ;h Uuid2; "(" ;hUuid 2; ")"

 ENDIF

 // hUuid2 now references an object which also points to

 // the base uuid = ced9 0000 66924a1287d56f270000 4762 (note 0's in byte position 2/3)

 // and has the offset = 0x1234

Expected Output:

Handle for custom U uid is FC03D913 (- 66856685)

http://ews-support.lairdtech.com/

BL600 smart BASIC Extensions

User Manual

Embedded Wireless Solutions Support Center:
http://ews -support.lairdtech.com

www.lairdtech.com/bluetooth

82 Laird Technologies
Americas: +1-800-492-2320
Europe: +44-1628-858-940

Hong Kong: +852 2923 0610

BLEHANDLEUUIDSIBLING is an extension function.

BleSvcCommit

This function is now deprecated, use BleServiceNew() & BleServiceCommt() instead.

BleServiceNew

FUNCTION

As explained in an earlier section, a Service in the context of a GATT table is a collection of related

Characteristics. This function is used to inform the underlying GATT table manager that one or more related

characteristics are going to be created and installed in the GATT table and that until the next call of this

function they shall be associated with the service handle that it provides upon return of this call.

Under the hood, this call results in a single attribute being installed in the GATT table with a type signifying a

PRIMARY or a SECONDARY service. The value for this attribute shall be the UUID that will identify this service

and in turn have been precreated using one of the functions; BleHandleUuid16(), BleHandleUuid128() or

BleHandleUuidSibling().

Note: When a GATT Client queries a GATT Server for services over a BLE connection, it will only get a list

of PRIMARY services. SECONDARY services are a mechanism for multiple PRIMARY services to

reference single instances of shared Characteristics that are collected in a SECONDARY service. This

nabanaj_ejcĂeoĂatla`epa`ĂsepdejĂpdaĂ`abejepekjĂkbĂ]Ăoanre_aĂqoejcĂpdaĂ_kj_alpĂkbĂ¦EJ?HQ@A@Ă

OANRE?A§ which itself is just an attribute that is grouped with the PRIMARY service definition. An

¦Ej_hq`a`ĂOanre_a§ĂeoĂatla`epa`ĂqoejcĂpdaĂbqj_pekjĂBleSvcAddIncludeSvc() which is described

immediately after this function.

This function now replaces BleSvcCommit() and marks the beginning of a service definition in the gatt server

table. When the last descriptor of the last characteristic has been registered the service definition should be

terminated by calling BleServiceCommit().

BLESERVICENEW (nSvcType, nUuidHandle, hService)

Returns
INTEGER, a result code.

Typical value: 0x0000 (indicates a successful operation)

Arguments

nSvcType
byVal nSvcType AS INTEGER

This will be 0 for a SECONDARY service and 1 for a PRIMARY service and all other values are

reserved for future use and will result in this function failing with an appropriate result code.

nUuidHandle

byVal nUuidHandle AS INTEGER

This is a handle to a 16 bit or 128 bit UUID that identifies the type of Service function

provided by all the Characteristics collected under it. It will have been pre-created using one
of the three functions: BleHandleUuid16(), BleHandleUuid128() or BleHandleUuidSibling()

hService

byRef hService AS INTEGER

If the Service attribute is created in the GATT table then this will contain a composite handle

which references the actual attribute handle. This is then subsequently used when adding

Characteristics to the GATT table. If the function fails to install the Service attribute for any
reason this variable will contain 0 and the returned result code will be non-zero.

Interactive
Command

No

 //Example :: BleServiceNew .sb (See in BL600CodeSnippets.zip)

Handle for custom Uuid is FC03D913 (- 66856685)

Handle for custom sibling Uuid is FC031234 (- 66907596)

http://ews-support.lairdtech.com/

